
1Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Video Lecture # 12
UNIX File System Architecture

Course: SYSTEM PROGRAMMING

Instructor: Arif Butt

Punjab University College of Information Technology (PUCIT)
University of the Punjab

2Punjab University College Of Information Technology (PUCIT)

Agenda
Instructor:Arif Butt

● Recap
● Disk geometry

● Disk partitioning

● File system mounting

● File System Architecture
● Data structures involved in FSA
● Connection to an opened file

● The open-read-write-close Paradigm

3Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

OS with Linux Lec#16
Hard Disk Geometry

4Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

OS with Linux Lec#17
Partitioning a Hard Disk

5Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

OS with Linux Lec#18
Formatting a Hard Disk

6Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

OS with Linux Lec#19
Mounting a File System

7Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

OS with Linux Lec#20
File System Architecture

8Punjab University College Of Information And Technology (PUCIT)

Schematic Structure of a Unix File System
Instructor:Arif Butt

446 16 16 16 16 2

1.FS type of this partition
2.Data block size
3.Total blocks
4.Info about free and allocated blocks

sudo tune2fs -l /dev/sda1 | less
df -i /dev/sda1

9Punjab University College Of Information And Technology (PUCIT)

Structure of UNIX Inode
Instructor:Arif Butt

10Punjab University College Of Information And Technology (PUCIT)

File System in Practice (Creating a file)
Instructor:Arif Butt

 - - - - B A - - - C
47

$ echo “This is text......” 1> /home/arif/f1.txt

54 .

6 ..

47 f1.txt

125 f2.txt

34 dir1

/home/arif/

150 600 700

Data Block numbers

Inode number

Owner

Group

Time Stamps

File Size

Permissions

10 x Dir Ptrs
...
...
...

Single I.D ptr

Double I.D ptr

Triple I.D ptr

inode Block # 47

11Punjab University College Of Information And Technology (PUCIT)

File System in Practice (Understanding directories)

Instructor:Arif Butt

y

demodir

x

a

x

c

copytox

d2

hltox

d1

12Punjab University College Of Information And Technology (PUCIT)

File System in Practice (Understanding directories)

Instructor:Arif Butt

$ls -iaR demodir/
demodir/:
2621457 . 2629351 .. 2627038 a 2627039 c
2627033 y

demodir/a:
2627038 . 2621457 .. 2627040 x
demodir/c:
2627039 . 2621457 .. 2627041 d1 2627042 d2
demodir/c/d1:
2627041 . 2627039 .. 2627040 hltox
demodir/c/d2:
2627042 . 2627039 .. 2627043 copytox

13Punjab University College Of Information And Technology (PUCIT)

File System in Practice (Understanding directories)

Instructor:Arif Butt

demodir

a

457 .

351 ..

038 a

039 c

033 y

038 .

457 ..

040 x

039 .

457 ..

041 d1

042 d2

c

041 .

039 ..

040 hltox

042 .

039 ..

043 copytox

d1 d2

14Punjab University College Of Information And Technology (PUCIT)

File System in Practice (Accessing a file)
Instructor:Arif Butt

● Searches directories for file name
● Locate and read inode 32
● Checks for permissions. (userID vs file owner/gp/others)
● Go to the data blocks one by one, the first 10 block addresses are in

inode block. Next in single, double and tripple indirect blocks

$ cat /home/arif/file1

15Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

Review
Connection of an Opened File

16Punjab University College Of Information And Technology(PUCIT)

File Descriptor to File Contents
Instructor:Arif Butt

Fd flags File ptr

PPFDT

0

1

2

3

4

5

File
offset

Status
flags

Inode
pointer

System Wide File Table

Type Pmns Owner Locks

Inode Table

0

54

75

93

233

13
12

File Descriptor Purpose POSIX Name stdio Stream

0 Standard input STDIN_FILENO stdin

1 Standard output STDOUT_FILENO stdout

2 Standard error STDERR_FILENO stderr

Access mode flags
O_RDONLY, O_WRONLY, O_RDWR

Open time flags
O_CREAT, O_TRUNC, O_EXCL

Operating mode flags
O_APPEND, O_SYNC, O_NONBLOCK

File Status Flags

17Punjab University College Of Information And Technology (PUCIT)

Relationship between fd and Open files
Instructor:Arif Butt

Fd flags File ptr

PPFDT
Process A

0

1
2

3
4

OPENMAX-1

5

File
offset

Status
flags

Inode
pointer

System Wide File Table

Type Pmns Owner Locks

Inode Table

0

54

75

93

233

13
12

A process can open a file twice. If this is done by calling open() twice, then there will
be two different entries in PPFTD as well as in SWFT for that single file

18Punjab University College Of Information And Technology (PUCIT)

Relationship between fd and Open files
Instructor:Arif Butt

Fd flags File ptr

PPFDT
Process A

0

1
2

3
4

OPENMAX-1

5

File
offset

Status
flags

Inode
pointer

System Wide File Table

Type Pmns Owner Locks

Inode Table

0

54

75

93

233

13
12

A process can open a file twice. If this is done by calling dup(), then there will be two
entries in PPFDT but only one entry in SWFT

19Punjab University College Of Information And Technology (PUCIT)

Relationship between fd and Open files
Instructor:Arif Butt

Fd flags File ptr

PPFDT
Process A

0

1
2

3
4

OPENMAX-1

5

Fd flags File ptr

PPFDT
Process B

0

1
2

3
4

OPENMAX-1

5

File
offset

Status
flags

Inode
pointer

System Wide File Table

Type Pmns Owner Locks

Inode Table

0

54

75

93

233

13
12

If two different processes opens the same file by calling open(),
there will be two different entries in SWFT

20Punjab University College Of Information And Technology(PUCIT)

Relationship between fd and Open files
Instructor:Arif Butt

Fd flags File ptr

PPFDT
Process A

0

1
2

3
4

OPENMAX-1

5

Fd flags File ptr

PPFDT
Child Process of A

0

1
2

3
4

OPENMAX-1

5

File
offset

Status
flags

Inode
pointer

System Wide File Table

Type Pmns Owner Locks

Inode Table

0

54

75

93

233

13
12

If a process opens a file by calling open(), and later fork(), then
there will be only one entry in SWFT

21Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

Universal I/O Modal

22Punjab University College Of Information And Technology (PUCIT)

open(), read(), write(), close() paradigm
Instructor:Arif Butt

Following are the four key system calls for performing file I/O (programming
languages and software packages typically employ these calls indirectly via I/O libraries):

● fd = open(pathname, flags, mode) opens the file identified by
pathname, returning a file descriptor used to refer to the open file in subsequent
calls. If the file doesn’t exist, open() may create it, depending on the settings of
the flags bit- mask argument. The flags argument also specifies whether the file is
to be opened for reading, writing, or both. The mode argument specifies the
permissions to be placed on the file if it is created by this call. If the open() call
is not being used to create a file, this argument is ignored and can be omitted.

● numread = read(fd, buffer, count) reads at most count bytes from
the open file referred to by fd and stores them in buffer. The read() call returns
the number of bytes actually read. If no further bytes could be read (i.e., end-of-file
was encountered), read() returns 0.

● numwritten = write(fd, buffer, count) writes up to count bytes
from buffer to the open file referred to by fd. The write() call returns the
number of bytes actually written, which may be less than count.

● status = close(fd) is called after all I/O has been completed, in order to
release the file descriptor fd and its associated kernel resources.

23Punjab University College Of Information And Technology (PUCIT)

read() System call
Instructor:Arif Butt

● Attempts to read upto count number of bytes from the file descriptor
fd into the buffer starting at memory address buf

● If count is 0 then read() return 0. If count is greater than
SSIZE_MAX then the result is unspecified

● On success, returns number of bytes read, which can be less than count
if EOF is encountered. Before a successful return the current file offset
is incremented by the number of bytes actually read

● In case of regular file having more than count bytes, it is guaranteed
that read will read count bytes and then will return However, in
case of fifos or sockets this is not guaranteed

● On failure, returns -1 and set errno. Check reasons in man page
● A return of zero indicates end-of-file

#include<unistd.h>
ssize_t read(int fd,void *buf,size_t count);

24Punjab University College Of Information And Technology(PUCIT)

Instructor:Arif Butt

● This function read count number of bytes from the file
descriptor fd at offset offset into the buffer starting at
memory address buf

● On success; Number of bytes read is returned and current file
offset is not advanced to new location

● On failure; Return -1 and errno is set to indicate the error

● A return value of 0 means nothing is read

#include<unistd.h>
ssize_t pread(int fd, void *buf, size_t count,
 off_t offset);

pread() System call

25Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

● Attempts to write up to count number of bytes to the file referenced
by file descriptor fd from the buffer starting at memory address buf.
The data is written starting with the current location of current f ile
offset

● On success; Number of bytes written is returned which may be less
than count. Current file offset is advanced to new location

● In case of regular file, the call guarantees writing count bytes, if the
disk is not full or the file size has not exceeded the maximum file size
supported by system. However, in case of fifos or sockets this is
not guaranteed

● On failure; Return -1 and errno is set appropriately. Check reasons in
man page

● Return 0 indicates nothing is written

#include<unistd.h>
ssize_t write(int fd,void *buf,size_t count);

write() System call

26Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

● This function write count number of bytes from memory
address pointed to by buf to the file referenced by file
descriptor fd at offset offset

● On success; Number of bytes written is returned and current file
offset is not advanced to new location

● On failure; Return -1 and errno is set to indicate the error

● A return value of 0 indicates nothing is written

#include<unistd.h>
ssize_t pwrite(int fd,void *buf,size_t count,
 off_t offset);

pwrite() System call

27Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

● Close a file descriptor fd so that it is no longer referenced in the
PPFDT and may be reused to a later call of open(), or dup()

● Closing a file also releases any record locks that a process may
have on file

● When a process terminates, all open files are automatically
closed by kernel

● On Success; Return 0

● On failure; Return -1 and errno is set appropriately

#include<unistd.h>
int close(int fd)

close() System call

28Punjab University College Of Information And Technology(PUCIT)

Instructor:Arif Butt

● Once performing blocking I/O using a read() or write() system
calls, if the call is interrupted during its execution we need to restart
the system call. A read() on a keyboard normally blocks if the user
has not entered anything. Similarly if a read() is trying to read an
empty pipe it blocks

● In such scenarios, most modern UNIX implementations restart such
system calls automatically. However, if you are not sure whether your
code would be running on such a system, you need to write code to
explicitly handle the restarting of an interrupted system call

Restarting a System call

repeat:
if((rv = read(fd, buff, SIZE)) == -1){

switch(errno){
case EINTR: goto repeat;
….....

}
}

29Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

● The file to be opened is identified by the pathname argument. If
pathname is a symbolic link, it is dereferenced

● On success, open() returns a file descriptor that is used to refer
to the file in subsequent system calls

● On error, open() returns –1 and errno is set accordingly
● The file status flags argument is a bit mask that:

a) Must include one of the three file access modes (O_RDONLY,
O_WRONLY, O_RDWR)

b) Zero or more file open time flags, (O_CREAT, O_TRUNC, O_EXCL)
c) Zero or more file operating mode flags (O_APPEND, O_SYNC,

O_NONBLOCK)

int open(char *pathname, int flags);
int open(char *pathname, int flags, mode_t mode);

open() System call

30Punjab University College Of Information And Technology (PUCIT)

Flags used by open()
Instructor:Arif Butt

Flags Description

O_RDONLY Open file in read only mode

O_WRONLY Open file in write only mode

O_RDWR Open file in read write mode

O_CREAT If file does not already exist , it makes a new file. If we specify
O_CREAT, then we must supply a mode argument in the open() call;
otherwise, the permissions of the new file will be set to some random
value from the stack

O_APPEND Writes are always appended to the end of the file

O_TRUNC If the file already exists and is a regular file, then truncate it to zero length,
destroying any existing data

O_EXCL This flag is used in conjunction with O_CREAT to indicate that if the file
already exists, it should not be opened; instead, open() should fail, with
errno set to EEXIST

O_CLOEXEC Enable the close-on-exec flag (FD_CLOEXEC) for the new file
descriptor. By default, the file descriptor will remain open across an
execve(). Normally used in multithreaded programs to avoid the race
conditions

31Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

● When open() is used to create a new file, the mode bit-mask argument
specifies the permissions to be placed on the file. If the open() call
doesn’t specify O_CREAT, mode can be omitted

● Mode argument can be specified as a number (typically in octal) or,
preferably, by ORing (|) together zero or more of the bit-mask constants.
These constants are:

● Permissions actually placed on a new file depend not just on the mode
argument, but also on the process umask and can be computed as

mode & ~umask
● This mode only applies to future accesses of the newly created file

Mode argument of open() System call

S_IRWXU 0700 S_IRWXG 0070 S_IRWXO 0007

S_IRUSR 0400 S_IRGRP 0040 S_IROTH 0004

S_IWUSR 0200 S_IWGRP 0020 S_IWOTH 0002

S_IXUSR 0100 S_IXGRP 0010 S_IXOTH 0001

32Punjab University College Of Information And Technology (PUCIT)

File Descriptor returned by open()
Instructor:Arif Butt

● SUSv3 specifies that if open() succeeds, it is guaranteed to use the
lowest-numbered unused file descriptor for the process. We can use this
feature to ensure that a file is opened using a particular file descriptor

● For example, the following sequence ensures that a file is opened using
standard input (file descriptor 0)

 close(STDIN_FILENO);
 fd = open(pathname, O_RDONLY);

● Since file descriptor 0 is unused, open() is guaranteed to open the file
using that descriptor

33Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

● In early UNIX implementations, open() had only two arguments and could not
be used to create a new file. Instead, the creat() system call was used to create
and open a new file

● The creat() system call creates and opens a new file with the given pathname,
or if the file already exists, opens the file and truncates it to zero length

● On success, creat() returns a file descriptor that can be used in subsequent
system calls. Calling creat() is equivalent to the following open() call:

fd = open(pathname, O_WRONLY | O_CREAT | O_TRUNC, mode);

● Because the open() flags argument provides greater control over how the file is
opened (e.g., we can specify O_RDWR instead of O_WRONLY), creat() is
now obsolete, although it may still be seen in older programs

● So, using creat(), a file is opened only for writing. If we were creating a
temporary file that we wanted to write and then read back, we had to call
creat(), close() and then open()

int creat(char *pathname, mode_t mode);

creat() System call

34Punjab University College Of Information Technology (PUCIT)

Things To Do
Instructor:Arif Butt

I f y o u h a v e p r o b l e m s v i s i t m e i n c o u n s e l i n g h o u r s

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

