
1Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Video Lecture # 18
Process Management

Part - II

Course: SYSTEM PROGRAMMING

Instructor: Arif Butt

Punjab University College of Information Technology (PUCIT)
University of the Punjab

Source Code files available at: https://bitbucket.org/arifpucit/spvl-repo/src
Lecture Slides available at: http://arifbutt.me

2Punjab University College Of Information Technology (PUCIT)

Agenda
Instructor:Arif Butt

● Process Creation using vfork()
● Copy-on-Write semantics
● Orphan processes
● Zombie processes
● Monitoring child processes using wait()
● Deciphering status argument of wait

● Using bit-wise operators
● Using macros

● Limitations of wait() system call
● Monitoring child processes using waitpid()
● Monitoring child processes using wait3()
● Monitoring child processes using wait4()

3Punjab University College Of Information Technology (PUCIT)

Process Creation using vfork()
Instructor:Arif Butt

● In bad old days a fork() would require making a complete copy of the
parent data space. This was an overhead because, since immediately after
a fork the child calls exec() most of the times. So for greater efficiency
BSD introduced vfork() system call. Also supported by POSIX.1

● vfork() is intended to create a new process when the purpose of the
new process is to exec a new program, and it do so without fully
copying the parent address space into the child

● Features that make vfork()more efficient than fork()are:
✔ No duplication of virtual memory pages is done for child process.

Child shares the parent's address space until it either performs exec()
or call exit()

✔ Execution of parent process is suspended until the child has performed
an exec() or an exit()

pid_t vfork();

4Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Process Creation using vfork()
Proof of concept

vfork1.c & vfork2.c

5Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

● Today most OSs implement fork() using copy-on-write pages so the only penalty incurred
by fork() is the time & memory required:

● To duplicate the parent's page table
● To create a unique task structure for the child

● Parent forks a child process. Child gets a copy of the parent’s page table. Pages which may
change are marked “copy-on-write” ; i.e. the pages are not copied for the child rather the child
starts sharing the pages and the writable pages are marked “copy-on-write”

● What happens when the child reads the page. Just accesses same memory as parent

Copy-On-Write Semantics

6Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

What happens when the child/parent writes the page?
● If either process (child/parent) tries to modify a shared page, a page fault

occurs and the page is copied and inserted in the page table for that
particular process

● The other process (who later faults on write) discovers it is the only owner;
so no copying takes place

Copy-On-Write Semantics

7Punjab University College Of Information Technology (PUCIT)

Copy-On-Write Semantics
Instructor:Arif Butt

Page table before and after modification of a shared copy-on-write page

SUSv3 marks vfork() as obsolete, and has removed the specification of vfork()

8

Punjab University College Of Information Technology (PUCIT)

Orphan Processes
Instructor:Arif Butt

● If a parent has terminated before reaping its child, and the
child process is still running, then that child is called
orphan

● In UNIX all orphan processes are adopted by init or
systemd which do the reaping

● Let us see this concept on a Linux terminal

9

Punjab University College Of Information Technology (PUCIT)

Zombie Processes
Instructor:Arif Butt

● Processes which have terminated but their parent(s) have not
collected their exit status and has not reaped them are called
zombies or defunct. So a parent must reap its children

● When a process terminates but still is holding system resources
like PCB and various tables maintained by OS. It is half-alive &
half-dead because it is holding resources like memory but it is
never scheduled on the CPU

● Zombies can't be killed by a signal, not even with the silver bullet
(SIGKILL). The only way to remove them from the system is to
kill their parent, at which time they become orphan and adopted
by init or systemd

10Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Monitoring Child Process

11Punjab University College Of Information Technology (PUCIT)

wait() System call
Instructor:Arif Butt

pid_t wait(int *status)
● The process that calls the wait() system call gets blocked till any

one of its child terminates
● The child process returns its termination status using the exit() call

and that integer value is received by the parent inside the status
argument (used for reaping and cleaning zombies from system). On
the shell, we can check this value in the $? environment variable

● On success, the wait() system call returns PID of the terminated
child and in case of error returns a -1

● If a process wants to wait for termination of all its children, then
while(wait(null) > 0);

Two purposes of wait() system call:
● Notify parent that a child process finished running
● Tell the parent how a child process finished

12Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Monitoring Child Processes
Proof of concept

wait1.c

13Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

A process can end in four ways:
● Success /Failure: On successful completion of the task, programs

call exit(0) or return 0 from main() function. In case of
failure, programs call exit() with a non-zero value. The
programmer need to document these error values in the manual
page

● Killed by a Signal: A process might get killed by a signal
generated from the keyboard, form an interval timer, from the
kernel, or from another process

● Stopped by a Signal: A process might get SIGTSTP signal and
temporary suspend its execution

● Continued by a Signal: A process might get SIGCONT signal
and continue its execution

wait() Status Argument

14Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

All this information is encoded in the status argument of the wait()
system call. A programmer can decipher this information using bit
operators or using available macros

15 7 08

wait() Status Argument

exit status (0-255)

 0

Normal termination

Killed by a signal

Stopped by a signal

Continued by a signal

7

7

15Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Monitoring Child Processes
Proof of concept

wait2.c

16Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

All this information is encoded in the status argument of the wait()
system call. A programmer can decipher this information using bit
operators or using available macros

15 7 08

wait() Status Argument

exit status (0-255)

 0

Normal termination

Killed by a signal

Stopped by a signal

Continued by a signal

7

7

17Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Monitoring Child Processes
Proof of concept

wait3.c

18Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

WIFEXITED (status) ● This macro returns true if child process exited normally
● WEXITSTATUS (status) returns exit status of the

child process
WIFSIGNALED (status) ● This macro returns true if child process is killed by a

signal
● WTERMSIG(status) returns the number of signal

that killed the process
● WCOREDUMP(status) returns a non-zero value if the

child process created a core dump file
WIFSTOPPED (status) ● This macro returns true if child process is stopped by a

signal
● WSTOPSIG(status) returns the number of signal

that stopped the process
WIFCONTINUED (status) ● This macro returns true if child process was resumed by

SIGCONT

Macros for wait() Status Argument
Instead of bit operators, we can use macros to decipher the status argument of
wait() , defined in /usr/include/x86_64-linux-gnu/bits/waitstatus.h

19Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Monitoring Child Processes
Proof of concept

wait4.c

20Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

● Using wait(), it is not possible for parent to retrieve the signal
number using which the execution of a child process is stopped
(SIGSTOP(19),SIGTSTP(20)). Moreover, it is also not
possible to be notified when a stopped child is resumed by
delivery of a (SIGCHILD(17), SIGCONT(18)) signal

● It is not possible to wait for a particular child, parent can only
wait for the first child that terminates

● It is not possible to perform a non blocking wait so that if no child
has yet terminated, parent get an indication of this fact

Limitations of wait() System call

21Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Monitoring Child Processes
Proof of concept

wait5.c

22Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

With the passage of time, UNIX designers have added a number of variants of
the wait() system call, like waitpid(), waitid(), wait3(),
wait4()...

The pid argument enables the selection of the child to be waited for:

● If pid > 0 : waits for the child whose PID equals the value of pid

● If pid == -1: waits for any child

wait(&status) <=> waitpid(-1, &status, 0)

● If pid == 0 : waits for any child process whose process Group ID is the same
as the calling/parent process

● If pid < -1: waits for any child process whose process Group ID equals the
absolute value of pid argument

pid_t waitpid(pid_t pid, int* status,int options);

waitpid() System call

23Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

The third argument of waitpid() call is a bit mask of zero or more of
the following flags, defined in /usr/include/wait.h file:

WUNTRACED Also returns information when a child is stopped by a
signal.

WCONTINUED Also return information about stopped children that have
been resumed by delivery of SIGCONT signal.

WNOHANG Performs polling. If no child specif ied by pid has yet
changed state, then return immediately, instead of
blocking.

waitpid() System call
pid_t waitpid(pid_t pid, int* status,int options);

24Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Monitoring Child Processes
Proof of concept

waitpid.c

25Punjab University College Of Information Technology (PUCIT)

wait3()& wait4() system calls
Instructor:Arif Butt

pid_t wait3(int *status , int options , struct rusage *rusage);
pid_t wait4(pid_t pid,int* status,int options,struct rusage *rusage);

● wait3() & wait4() system calls are similar to waitpid()but also
returns resource usage information about the terminated child in the
structure pointed to by rusage arguments,which contains information like
amount of CPU time used by the process, memory management statistics.

● Waiting for any of the children:

wait3(&status,options,null) <=> waitpid (-1,&status,options);

● Waiting for a particular child with id pid:

wait4(pid,&status,options,null)<=>waitpid(pid,&status,options);

26Punjab University College Of Information Technology (PUCIT)

Things To Do
Instructor:Arif Butt

I f y o u h a v e p r o b l e m s v i s i t m e i n c o u n s e l i n g h o u r s

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

