
1Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Video Lecture # 25
Design and Code of

Signal Handlers

Course: SYSTEM PROGRAMMING

Instructor: Arif Butt

Punjab University College of Information Technology (PUCIT)
University of the Punjab

2Punjab University College Of Information Technology (PUCIT)

Today's Agenda
Instructor:Arif Butt

● Sending signals using kill(), raise(), alarm(),
abort(), pause()

● Ignoring and writing our own Signal Handlers using signal()

● Introduction to Signal Sets and their related system calls

● Masking signals using sigprocmask()

● Limitations of signal() call

● Ignoring and writing Signal Handlers using sigaction()

3Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Sending Signals to Processes
 in a C Program

4Punjab University College Of Information Technology (PUCIT)

kill() System call
Instructor:Arif Butt

● One process can send a signal to another process using the
kill() system call

● The pid argument identifies one or more processes to which the
signal specified by sig is to be sent

● If sig is zero then normal error checking is performed but no
signal is sent. Used to determine if a specified process still exists.
If it doesn't exist, a -1 is returned & errno is set to ESRCH

● If no process matches the specified pid, kill() fails and sets
errno to ESRCH

int kill(pid_t pid, int sig);

5Punjab University College Of Information Technology (PUCIT)

kill() System call (cont...)
Instructor:Arif Butt

Four different cases determine how pid is interpreted:

● If pid > 0, the signal is sent to the process with the process ID
specified by first argument

● If pid == 0, the signal is sent to every process in the same process
group as the calling process, including the calling process itself

● If pid < –1, the signal is sent to every process in the process group
whose PGID equals the absolute value of pid

● If pid == –1, the signal is sent to every process for which the calling
process has permission to send a signal, except init and the calling
process. If a privileged process makes this call, then all processes on
the system will be signaled, except for these last two

int kill(pid_t pid, int sig);

6Punjab University College Of Information Technology (PUCIT)

raise() Library call
Instructor:Arif Butt

● Sometimes, it is useful for a process to send a signal to itself. The raise()
function performs this task

● In a single-threaded program, a call to raise() is equivalent to the
following call to kill():

kill(getpid(), sig);

● When a process sends itself a signal using raise() or kill(), the signal
is delivered immediately (i.e., before raise() returns to the caller)

● Note that raise() returns a nonzero value (not necessarily –1) on error.
The only error that can occur with raise() is EINVAL, because sig was
invalid

int raise(int sig);

7Punjab University College Of Information Technology (PUCIT)

abort() Library call
Instructor:Arif Butt

● The abort() function terminates the calling process by raising a
SIGABRT signal. The default action for SIGABRT is to produce a core
dump file and terminate the process. The core dump file can then be
used within a debugger to examine the state of the program at the time
of the abort() call

● abort() function never returns

void abort();

8Punjab University College Of Information Technology (PUCIT)

pause() System call
Instructor:Arif Butt

● The pause() system call causes the invoking process/thread to
sleep until a signal is received that either terminates it or causes it
to call a signal catching function

● The pause() function only returns when a signal was caught
and the signal-catching function returned. In this case pause()
returns -1, and errno is set to EINTR

int pause();

9Punjab University College Of Information Technology (PUCIT)

alarm() System call
Instructor:Arif Butt

● The alarm() system call is used to ask the OS to send calling process a
special signal SIGALARM(14) after a given number of seconds. If seconds is
zero no new alarm is scheduled

● This function returns the previously registered alarm clock for the process that
has not yet expired, i.e., the number of seconds left for that alarm clock is
returned as the value of this function. Previously registered alarm clock is
replaced by new value

● UNIX like systems do not operate as real-time systems, so your process might
receive this signal after a longer time than requested. Moreover, there is only
one alarm clock per process. Can be used for following purposes:
● To check timeouts (e.g., wait for user input up to 30 seconds, else exits)
● To check some conditions on a regular basis (e.g., if a server has not

responded in last 30 seconds, notify the user and exits)

unsigned int alarm(unsigned int seconds);

10

Adding a Delay: using sleep()
Instructor:Arif Butt

Punjab University College Of Information Technology (PUCIT)

● ﻿These calls causes the calling thread to sleep (suspend execution) either
until the number of specified in seconds specified in the argument have
elapsed or until a signal arrives which is not ignored

● ﻿Returns zero if the requested time has elapsed, or the number of seconds left
to sleep, if the call was interrupted by a signal handler

﻿struct timespec {
 time_t tv_sec; /* seconds */

 long tv_nsec; /* nanoseconds */

};

int sleep(unsigned int secs);
int usleep(useconds_t usec);
int nanosleep(const struct timespec* req,
 struct timespec* rem);

11Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Sending Signals
Proof of Concept
sig1.c – sig5.c

12Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Ignoring Signals and Writing SHs
using

signal()

13Punjab University College Of Information Technology (PUCIT)

● To change the disposition of a particular signal a programmer can use the
signal() system call, which installs a new signal handler for the signal
with number signum

● The second parameter can have three values

i) SIG_IGN: the signal is ignored

ii) SIG_DFL: the default action associated with signal occur

iii) A user specified function address, which is passed an integer argument
and returns nothing

● The signal() system call returns the previous signal handler, or SIG_ERR
on error

● The signals SIGKILL and SIGSTOP cannot be caught. Moreover, the
behavior of a process is undefined after it ignores SIGFPE, SIGILL or
SIGSEGV signal that was not generated by kill() or raise() functions

Instructor:Arif Butt

sighandler_t signal(int signum, void (*sh)(int));

signal() System call

14Punjab University College Of Information Technology (PUCIT)

Handling Signals
Instructor:Arif Butt

void (*oldhandler)(int);
oldhandler = signal(SIGINT, newhandler);

if (signal(SIGINT,oldhandler) == SIG_ERR){---}

If SIGINT is delivered, oldhandler
will be used to handle signal

If SIGINT is delivered, newhandler
will be used to handle signal

15Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Proof of Concept
usingsignal/ignoringsig/ignoringsig.c

usingsignal/handlingsig/handler1.c – handler5.c

16Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Masking Signals
using

sigprocmask()

17Punjab University College Of Information Technology (PUCIT)

Avoiding Race Conditions Using Signal Mask
Instructor:Arif Butt

● One of the problems that might occur when handling a signal, is the
occurrence of a second signal while the signal handler function is
executing

● A process can temporarily prevent signals from being delivered, by
blocking/masking it, while it is doing some thing critical, or while it is
executing inside a signal handler

● Every process has a signal mask that defines the set of signals
currently blocked for that process. One bit for each possible signal. If
a bit is ON, that signal is currently blocked

● Since it is possible for the number of signals to exceed to number of
bits in an integer, therefore, POSIX.1 defines a data type called
sigset_t that holds a signal set of a process

● When a process blocks a signal, the OS doesn’t deliver signal until the
process unblocks the signal. However, when a process ignores a
signal, signal is delivered and the process handles it by throwing it
away

● Remember, after a fork(), child process inherits its parent mask

18Punjab University College Of Information Technology (PUCIT)

Functions related to Signal Sets

To create a process signal mask, you need to create a variable of type
sigset_t. The sigemptyset() function initializes a signal set to
contain no members, while the sigfillset() function initializes a set
to contain all signals. After initialization, individual signals can be added
to a set using sigaddset() and removed using sigdelset(). There
are two ways to initialize a signal set:

● You can initially specify it to be empty with sigemptyset() and
then add specified signals individually using sigaddset()

● You can initially specify it to be full with sigfillset() and then
delete specified signals individually using sigdelset()

Instructor:Arif Butt

int sigemptyset(sigset_t *set);
int sigfillset(sigset_t *set);
int sigaddset(sigset_t *set, int sig);
int sigdelset(sigset_t *set, int sig);

19Punjab University College Of Information Technology (PUCIT)

Setting the Process Signal Mask
Instructor:Arif Butt

int sigprocmask(int how,const sigset_t* nset, sigset_t* oset);

● The sigprocmask() allows us to get the existing signal mask or set a
new signal mask of a process

● The second argument specifies the new signal mask. It it is NULL, then the
signal mask is unchanged

● The third argument will store the old mask of the process. This is useful
when we want to restore the previous masking state once we're done with our
critical section

● The first argument how actually determines how the process signal mask
will be changed. It can have following three values:

SIG_BLOCK The set of blocked signals is the union of nset and the
current signal set oset

SIG_UNBLOCK The signals in the nset are removed from the current set of
blocked signals. It is legal to attempt to unblock a signal
which is not blocked

SIG_SETMASK The set of blocked signals is set to the argument nset

20Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Proof of Concept
usingsignal/maskingsig/sigprocmask.c

21Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Ignoring Signals, Masking Signals and
Writing SHs

using

sigaction()

22Punjab University College Of Information Technology (PUCIT)

Limitations of signal() System call
Instructor:Arif Butt

● Using the signal() call, we cannot determine the current
disposition of a signal without changing the disposition.
Example: If we want to determine the current disposition of
SIGINT, we can't do it without changing the current disposition

sighandler_t oldHandler = signal(SIGINT, &newHandler);

● If we use signal(), to register a handler for a signal, it is
possible that after we entered the signal handler, but before we
managed to mask all the signals using sigprocmask(), we
receive another signal, which WILL be called

● There are a lot of variations in the behavior of signal() call
across UNIX implementations

23Punjab University College Of Information Technology (PUCIT)

● Although sigaction() is somewhat more complex to use than
signal(), it gives following advantages over signal():
● sigaction() allows us to retrieve the disposition of a signal

without changing it, and to set various attributes controlling precisely
what happens when a signal handler is invoked

● sigaction() is more portable than signal()
● The first argument signum identifies the signal whose disposition we

want to retrieve or change
● The second argument newact is a pointer to a structure specifying a

new disposition for the signal. If we are interested only in finding the
existing disposition of the signal, then we can specify NULL for this
argument

● The third argument oldact is used to return information about the
signal’s previous disposition. If we are not interested in this information,
then we can specify NULL for this argument

Instructor:Arif Butt

int sigaction(int signum, const struct sigaction*
 newact, struct sigaction* oldact);

sigaction() System call

24Punjab University College Of Information Technology (PUCIT)

● The structures pointed to by third and fourth argument to sigaction
is of following type:

struct sigaction {
 void (*sa_handler)(int);
 sigset_t sa_mask;
 int sa_flags;
};

● The sa_handler field specifies the pointer to the handler function
● The sa_mask field specifies the process signal mask to be set while

this signal is being handled
● The sa_flags field contains flags that effect signal behavior,

normally it is set to zero

Instructor:Arif Butt

sigaction() System call (cont...)

25Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Proof of Concept
usingsigaction/ignoringsig.c
usingsigaction/handler1.c

26Punjab University College Of Information Technology (PUCIT)

Things To Do
Instructor:Arif Butt

I f y o u h a v e p r o b l e m s v i s i t m e i n c o u n s e l i n g h o u r s

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

