
1Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Lecture # 1.1
C-Compilation & Libraries

Course: Advanced Operating System

Instructor: Arif Butt

Punjab University College of Information Technology (PUCIT)
University of the Punjab

2Punjab University College Of Information Technology (PUCIT)

Today's Agenda
Instructor:Arif Butt

● Review of C Compilation process
● Format of object files
● Viewing the contents of object files
● Loading a program in memory
● Layout of a process in memory
● Review of Linking process
● Merging Relocatable Object Files into Executable
● Understanding Linker relocation process
● Understanding Linker symbol resolution
● Creating and using your own Static Libraries
● Creating and using your own Dynamic Libraries

3

Instructor:Arif Butt
Source code file(s)

Preprocessed code file(s)

Assembly code file(s)

Object code file(s)

Executable file (myexe)

Stored in secondary storage as an
executable image in a specific format

Process Address
Space in main

memory

Preprocessor
(cpp)gcc -E hello.c 1> hello.i

gcc -S hello.i

gcc -c hello.s

gcc hello.o -o myexe

Compiler
(cc)

Assembler
(as)

Linker
(ld)

Loader

● Interpret preprocessor directives
● Include header files
● Expand macros
● Remove comments

● Checks for syntax errors
● Converts the src to assembly

of underlying processor

● Generates relocatable object
files to be used by linker

● Contains symbol table

● Static vs Dynamic linking
● Contains code and data for all

functions defined in src files
● Contains global symbol table

Library
libc

4Punjab University College Of Information Technology (PUCIT)

 Types of Object Files (Modules)
Instructor:Arif Butt

● Relocatable object file: (.o file) Contains binary code and data in a
form that can be combined with other relocatable object files at
compile time to create an executable object file. Each .o file is
produced from exactly one .c file. Compilers and assemblers generate
relocatable object files.

● Executable object file: (a.out file) Contains binary code and data in a
form that can be copied directly into memory and executed. Linkers
generates executable object files.

● Shared object file: (.so file) A special type of relocatable object file
that can be loaded into memory and linked dynamically, at either load
time or run time. Called dynamic link libraries (dlls) in Windows.
Compilers and assemblers generate shared object files.

● Core file: A disk file that contains the memory image of the process at
the time of its termination. This is generated by system in case of
abnormal process termination.

5Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Object file formats vary from system to system. Some famous formats are mentioned below:

Formats Description

a.out Original file format for UNIX. It consists of three sections: text,
data, and bss, which are for program code, initialized data and
uninitialized data respectively.

COFF Common Object File Format was introduced with SVR3 Unix.
COFF files may have multiple sections, each prefixed by a
header. The number of sections is limited. The COFF
specification includes support for debugging but the debugging
info was limited. Later ECOFF was introduced by MIPS and
XCOFF by IBM

ELF Executable and Linking Format came with SVR4 UNIX. ELF is
similar to COFF in being organized into a number of sections,
but it removes many of COFF's limitations. ELF is used on most
modern UNIX systems, including GNU/Linux, Solaris and Irix.
Also used on many embedded systems

PE Portable Executable format is used by Windows for their
executables. PE is basically COFF with additional headers. The
extension normally is .exe

 Formats of Object Files (Modules)

6

Punjab University College Of Information Technology (PUCIT)

 ELF Format
Instructor:Arif Butt

● Executable and Linking Format is binary format, which is used in
SVR4 Unix and Linux systems

● It is a format for storing programs or fragments of programs on
disk, created as a result of compiling and linking

● ELF not only simplifies the task of making shared libraries, but
also enhances dynamic loading of modules at run time

● An executable file using the ELF format consist of ELF Header,
Program Header Table and Section Header Table

● The files that are represented in this formats are:
● Relocatable file objects (.o)

● Normal executable files (a.out)

● Shared object files (.so)

● Core files

7

Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

 ELF Format (cont...)

8Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Reading Contents of Object Files
readelf, objdump

9Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Loading program in gdb
&

Viewing CPU Registers

10Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Loading executable in
Memory

11Punjab University College Of Information And Technology(PUCIT)

Instructor:Arif Butt

Punjab University College Of Information And Technology(PUCIT)

 Loading Executable File in Memory
Instructor:Arif Butt

Punjab University College Of Information And Technology(PUCIT)

Instructor:Arif Butt

Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

0xbfffffff
0xc0000000

etext

edata

end

0x00000000

0xffffffff Memory
invisible
to user code

Process Address Space

0x40000000

12

Instructor:Arif Butt

Punjab University College Of Information Technology (PUCIT)

 Startup Routine in crt1.o

0x08048000 <_start>: /* entry point in .text */
call __libc_init_first/* startup code in .text */
call _init /* startup code in .init */
call atexit /* startup code in .text */
call main /* application main func */
call _exit /* returns control to OS*/

13Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Linking Process

14Punjab University College Of Information Technology (PUCIT)

 Why should you Learn Linking Process?
Instructor:Arif Butt

● Understanding linkers will help you build large programs

● Understanding linker will help you avoid dangerous programming
errors, like what happens when you create global variables with same
name in multiple object files?

● Understating linking will help you understand how language scoping
rules are implemented, like what happen when you declare a variable
or function with static attribute?

● Understanding linking will help you understand other system concepts
like loading and running programs, virtual memory, paging, and
memory mappings

● Understanding linking will enable you to exploit shared libraries

15Punjab University College Of Information Technology (PUCIT)

 Advantages of Linkers

Instructor:Arif Butt

● Modularity: Programs can be written as a collection of smaller source
files rather than one monolithic mass. We can build libraries of
common function like the standard C library /usr/lib/x86_64-
linux-gnu/libc.a

● Efficiency: It saves time, e.g., if we have ten source files and have
made change in only one, we need to compile only that file and not all
the files. Later of course we need to relink all the object files

 Why should you Learn Linking Process?

 What Linkers do?
● Relocation: Merge code and data sections of multiple object files into

the code and data sections of the final executable

● Symbol Resolution: Linker associates each symbol reference with
exactly one symbol definition

16

Instructor:Arif Butt
Source code files (main.c, swap.c)

Preprocessed code files (main.i, swap.i)

Assembly code files (main.s, swap.s)

Object code files (main.o, swap.o)

Executable file (myexe)

Stored in secondary storage as an
executable image

Process Address
Space in main

memory

Preprocessing (cpp)

gcc main.o swap.o -o myexe

Compiling (cc)

Assembling (as)

Linking (ld)

Loader

Static
Library (.a)

Dynamic
Library (.so)

Load Time

Dynamic
Library (.so) Run Time

17Punjab University College Of Information Technology (PUCIT)

 What Linkers do?
Instructor:Arif Butt

Relocation: For each .c file, compilers and assemblers generate code and
data sections in each object (.o) file that start at address zero

● The linker merges separate code and data sections into single sections
● It then relocates symbols from their relative locations in the .o files to their

final absolute memory locations in the executable
● Finally, updates all references to these symbols to reflect their new position

Relocatable object files
Executable object file

18

Instructor:Arif Butt

Proof of Concept
(Relocation)

03/linking/link/swap.c,main.c

Punjab University College Of Information Technology (PUCIT)

19

Punjab University College Of Information Technology (PUCIT)

 Linker Symbols
Instructor:Arif Butt

In the context of linker there are three different kinds of symbols:

1. Global Symbols: Symbols that are defined in one module and
can be referenced by other modules are called global symbols

2. External Symbols: Global symbols that are referenced by a
module, but are defined in some other module. Normally declared
with extern keyword

Non static functions and non static global variables fall in above two categories

3. Local Symbols: Symbols that are defined and referenced
exclusively by a single module. For example, any global variable
or function declared with the static keyword is private to that
module

20Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

 Linker Symbols (cont...)

Source : Computer Systems “A Programmer's Perspective”

21

Instructor:Arif Butt

Proof of Concept
(Symbol Resolution)

03/linking/link/swap.o, main.o

Punjab University College Of Information Technology (PUCIT)

22Punjab University College Of Information Technology (PUCIT)

 What Linkers do? (cont...)
Instructor:Arif Butt

Symbol Resolution: Symbol definitions are stored by compiler in symbol
table, which is an array of structs, shown below

Linker associates each symbol reference with exactly one symbol definition

typedef struct{
int name; /*string table offset*/
int value; /*section offset address of the symbol*/
int size; /*object size in bytes*/
char type:4, /*object, func, section, srcfile*/

 binding:4;/*local or global*/
char section;/*section header index*/

} Elf_Symbol;

What if there are two symbol definitions with the same name?

23

Punjab University College Of Information Technology (PUCIT)

 Linker Symbol Rules
Instructor:Arif Butt

● The linker resolves symbol references by associating each
reference with exactly one symbol definition from the symbol
tables of its input relocatable object files

● Symbol resolution is straightforward for references to local
symbols that are defined and referenced in a single module.
However, resolving references to global symbols that are defined in
some other module and referenced in some other is trickier

● When the compiler encounters a symbol that is not defined in the
current module, it assumes that it is defined in some other module,
generates a linker symbol table entry, and leaves it for the linker to
handle void foo();

int main(){
 foo();
 return 0
}

● For example, the opposite code file
will compile without a hitch, however,
the linker terminates when it cannot
resolve the reference to function foo

24

Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

The three types of linker symbols (global, external, and local) are either
marked as strong or weak.

1. Strong Symbols: Function names and initialized globals

2. Weak Symbols: Uninitialized globals

 Linker Symbol Rules (cont...)

25

Punjab University College Of Information Technology (PUCIT)

 Linker Symbol Rules (cont...)
Instructor:Arif Butt

Keeping in mind the concept of strong and weak symbols, UNIX
linkers use the following rules for dealing with multiply-defined
symbols.

1. Rule 1: Multiple strong symbols are not allowed

2. Rule 2: Given a strong symbol and multiple weak symbols,
choose the strong symbol

3. Rule 3: If there are multiple weak symbols, choose an arbitrary
one

26

Instructor:Arif Butt

Proof of Concept
(Handling Conflicts in Symbol Resolution)

03/linking/symbols/one...five

Punjab University College Of Information Technology (PUCIT)

27

Punjab University College Of Information Technology (PUCIT)

How to avoid Symbol Conflicts
Instructor:Arif Butt

Try to avoid global variables, if you can't

1. Use static keyword with your global variables to make their scope
local to that module

2. Always initialize your global variables, thus making them a
strong symbol. This way you will get an error while linking, if
another strong symbol with the same name exist in another
module

28Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Static Libraries
Archives

29Punjab University College Of Information And Technology(PUCIT)

Instructor:Arif Butt

Punjab University College Of Information And Technology(PUCIT)

Instructor:Arif Butt

● Concatenate related relocatable object files into a single file with an
index called an archive

● Enhance the linker so that it tries to resolve unresolved external
references by looking for the symbols in one or more archives

● If an archive member file resolve reference, link it to the executable
● To make the processes fast .a files contains an index for the symbols in

all files

Punjab University College Of Information And Technology(PUCIT)

Instructor:Arif Butt

Punjab University College Of Information And Technology(PUCIT)

Instructor:Arif Butt

Punjab University College Of Information And Technology(PUCIT)

Instructor:Arif Butt

Punjab University College Of Information And Technology(PUCIT)

Instructor:Arif Butt

Punjab University College Of Information And Technology(PUCIT)

Instructor:Arif Butt

Punjab University College Of Information And Technology(PUCIT)

Instructor:Arif Butt

Punjab University College Of Information And Technology(PUCIT)

Instructor:Arif Butt

Punjab University College Of Information And Technology(PUCIT)

Instructor:Arif Butt

Punjab University College Of Information And Technology(PUCIT)

Instructor:Arif Butt

Punjab University College Of Information And Technology(PUCIT)Punjab University College Of Information And Technology(PUCIT)Punjab University College Of Information And Technology(PUCIT)Punjab University College Of Information And Technology(PUCIT)Punjab University College Of Information Technology (PUCIT)

 Static Libraries

$ ar -rs libc.a atoi.o \
printf.o...random.o

30

Punjab University College Of Information Technology (PUCIT)

Linking with Static Library
Instructor:Arif Butt

Translators
(cpp, cc, as)

Archiver
(ar)

add.o sub.o div.o mul.o

libarifmath.a

driver.c mymath.h

driver.o
Relocatable object file

libc.a

Linker (ld)

Standard C static library
sub.o printf.o

driver
Fully linked executable object file

31

The Librarian (ar utility)
Instructor:Arif Butt

ar is a Unix tool also called librarian that allows us to :

1) Create

 -r → create a new archive

#ar -r libfirst.a file1.o file2.o

 -q → append an object file to an existing archive

 #ar -q libfirst.a file3.o

 -d → delete object modules from an existing archive

 #ar -d libfirst.a file2.o

2)Extract:
 -x → extract object modules in your PWD

 #ar -x /usr/lib/libm.a

3)Display:
 -t → display table of contents of an archive
 #ar -t /usr/lib/libm.a

Punjab University College Of Information Technology (PUCIT)

32

Punjab University College Of Information Technology (PUCIT)

Linking with Static Library
Instructor:Arif Butt

Linker’s algorithm for resolving external references:

● Scan .o files and .a files in the command line order

● During the scan, keep a list of the current unresolved references

● As each new .o or .a file, obj, is encountered, try to resolve each
unresolved reference in the list against the symbols defined in obj

● If any entries in the unresolved list at end of scan, then error

Problem:

● Command line order matters

● Put libraries at the end of the command line

33Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Limitations of static linking:
● The size of executable is large
● Duplication in the executables stored on disk
● Duplication in the executables running in memory. Suppose you are

executing ten C-programs all of them using the scanf functions. So
ten copies of scanf functions will be there in memory.

● Minor bug fixes of system libraries require each application to be
explicitly relinked

Modern solution: Shared Libraries
● Object files that contain code and data that are loaded and linked into

an application dynamically, at either load-time or run-time
● In UNIX world they are called shared objects (.so)
● In MS world they are called dynamic link libraries or dlls

 Limitations of Static Libraries

34Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Dynamic Libraries
Shared Objects

35

 Shared libraries
Instructor:Arif Butt

● A shared library is similar to static library because it is also a group of
object files however a shared library is different from a static library as the
linker and loader both behave differently to a dynamic library.

● A code that can be loaded and executed at any address without being
modified by the linker is known as position-independent code. The –fPIC
option to gcc specifies that the compiler should generate position-
independent code. This is necessary for shared libraries, since there is no
way of knowing at link time where the shared library code will be located
in memory.

● Steps to create a shared library are given below:
Step1: Compile each .c file with -fPIC flag to create object files.

 $gcc -c -fPIC myadd.c mysub.c mydiv.c mymul.c

Step2: Produce a shared object which can then be linked with other objects to
form an executable

$gcc -shared myadd.o mysub.o mydiv.o mymul.o -o libarifmath.so

Punjab University College Of Information Technology (PUCIT)

36

Punjab University College Of Information Technology (PUCIT)

Dynamic Linking at Load Time
Instructor:Arif Butt

Translators
(cpp, cc, as)

driver.c mymath.h

driver.o
Relocatable object file

libarifmath.so
libc.so

Linker (ld)

relocation symbol
and table info

driverPartially linked executable object file stored on disk

$gcc -c -fPIC myadd.c mysub.c mydiv.c mymul.c
$gcc -shared myadd.o mysub.o mydiv.o mymul.o -o libarifmath.so

Loader (execve)

Dynamic Linker
(ld-linux.so)

libarifmath.so
libc.so

Code and data

Fully linked executable in memory

ld search for libraries
in standard directories
/usr/lib/x86_64
-linux-gnu/

export LD_LIBRARY_PATH=...

37Punjab University College Of Information Technology (PUCIT)

Things To Do
Instructor:Arif Butt

I f y o u h a v e p r o b l e m s v i s i t m e i n c o u n s e l i n g h o u r s

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

