
1Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Lecture # 1.6
Process Heap

Behind the Curtain

Course: Advanced Operating System

Instructor: Arif Butt

Punjab University College of Information Technology (PUCIT)
University of the Punjab

2Punjab University College Of Information Technology (PUCIT)

Agenda
Instructor:Arif Butt

● Recap: Allocating, using and freeing memory on heap
● Layout of heap and heap allocators
● System Calls brk() and sbrk()
● Common programming errors
● Tools and Libraries for malloc debugging

● Splint
● Electric Fence
● Valgrind

3Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

RECAP
Allocating, using and freeing Memory on Heap

4Punjab University College Of Information And Technology(PUCIT)

Instructor:Arif Butt

Punjab University College Of Information And Technology(PUCIT)

Process Logical Address Space
Instructor:Arif Butt

Punjab University College Of Information And Technology(PUCIT)

Instructor:Arif Butt

Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

&end

5Punjab University College Of Information Technology (PUCIT)

Heap Allocators
Instructor:Arif Butt

Allocators come in two basic styles. Both styles require the application to
explicitly allocate blocks. They differ about which entity is responsible for
freeing allocated blocks

● Explicit allocators require the application to explicitly free any
allocated blocks. For example, the C standard library provides an
explicit allocator called the malloc package. C programs allocate a
block by calling the malloc function and free a block by calling the
free function. In C++, we normally use the new and delete
operators

● Implicit allocators require the allocator to detect when an allocated
block is no longer being used by the program and then free the block.
Implicit allocators are also known as garbage collectors, and the
process of automatically freeing unused allocated blocks is known as
garbage collection. For example, higher-level languages such as Lisp,
ML and Java rely on garbage collection to free allocated blocks

6Punjab University College Of Information Technology (PUCIT)

The malloc family in C
Instructor:Arif Butt

void *malloc (size_t size);
void*calloc(size_t noOfObjects, size_t size);
void *realloc (void* ptr, size_t newsize);
void free (void* ptr);

● malloc()allocates size bytes from the heap and returns a pointer to the start of the newly
allocated block of memory. On failure returns NULL and sets errno to indicate error

● calloc() allocates space for specific number of objects, each of specified size. Returns a
pointer to the start of the newly allocated block of memory. Unlike malloc(),
calloc() initializes the allocated memory to zero. On failure returns NULL and sets
errno to indicate error

● realloc() is used to resize a block of memory previously allocated by one of the
functions in malloc() package. Ptr argument is the pointer to the block of memory that is
to be resized. On success realloc() returns a pointer to the location of the resized block,
which may be different from its location before the call. On failure, returns NULL and
leaves the previous block pointed to by pointer untouched.

● free() deallocates the block of memory pointed to by its pointer argument, which should
be an address previously returned by functions of malloc package

7Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

CLA & EV

Top of stack

rbp

rsp

Hi address

Low address

Illustration: 1D Array on Heap

char* str

.text

.data
.bss brk

char*str=(char*)malloc(sizeof(char)*10);

…
…
…

brk

free(str);

&end
&edata

&etext

8Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

names
0

1

2

3

int i, int rows = 4, cols = 12;
char ** names = (char**)malloc(sizeof(char*) * rows);
for(i = 0; i < rows; i++)
 names[i] = (char*)malloc(sizeof(char) * cols);
…
…
…
for(i = 0; i < rows; i++)
 free(names[i]);
free(names);

A r i f B u t t \0 \0 \0

H a d e e d \0 \0 \0 \0 \0 \0

M u j a h i d \0 \0 \0 \0 \0

Y a s h a l \0 \0 \0 \0 \0 \0

Illustration: 2D Array on Heap

9Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Example: heapfiller.c

$100 Question

If a process continuously calls malloc(), without calling free(),
what happens and why?

10Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Heap: Behind the curtain

11Punjab University College Of Information Technology (PUCIT)

System Call: brk()
Instructor:Arif Butt

int brk(void* end_data_segment);

● Resizing the heap is actually telling the kernel to adjust the
process's program break, which lies initially just above the end
of the uninitialized data segment (i.e end variable)

● brk() is a system call that sets the program break to location
specified by end_data_segment. Since virtual memory is
allocated in pages, this request is rounded up to the page
boundary. Any attempt to lower the program break than end
results in segmentation fault

● The upper limit to which the program break can be set depends
on range of factors like:
● Process resource limit for size of data segment
● Location of memory mappings, shared memory segment and

shared libraries

12Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

● sbrk()is a C library wrapper implemented on top of brk(). It
increments the program break by increment bytes

● On success, sbrk()returns a pointer to the end of the heap
before sbrk() was called, i.e., a pointer to the start of new area

● So calling sbrk(0) returns the current setting of the program
break without changing it

● On failure -1 is returned with errno ENOMEM

void *sbrk (intptr_t increment);

Library Call: sbrk()

13Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Example: brk.c

$100 Question

After a process calls malloc(), which in turn calls brk(), what is
the new location of program break brk?

14Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

A Basic Heap Allocator
brk
end Heap grows

Length of Block
(L)

Pointer to
previous free

block (P)

Pointer to next free
block

(N)

Remaining Bytes of free block

Length of Block
(L)

Memory for use

Address Returned

Structure of Allocated Block on Heap:

Structure of Free Block on Heap:

brk
end

Heap grows

15Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

A Basic Heap Allocator (cont...)

L - N L P N L P -

L P N

L

Free Block:

Allocated block:

● When a program calls malloc the allocator scans the link list of free
memory blocks as per one of the contiguous memory allocation algorithm's
(first fit, best fit, next fit), assigns the block and update the data structures

● If no block on the free list is large enough then malloc() calls sbrk()
to allocate more memory

● To reduce the number of calls to sbrk(), malloc() do not allocate
exact number of bytes required rather increase the program break in
large units (some multiples of virtual memory page size) and putting the
excess memory onto the free list

16Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

A Basic Heap Allocator (cont...)

L - N L P N L P -

L P N

L

Free Block:

Allocated block:

$100 Question

When a process calls free(), how does it know as to how much
memory it needs to free? Does it has any effect on program break
brk?

17Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

L - N L P N L P -

L P N

L

Free Block:

Allocated block:

Coalescing Freed Memory
● When you call free(), you put a chunk of memory back on the free

list
● There may be times when the chunk immediately before it in memory,

and/or the chunk immediately after it in memory are also free
● If so, it make sense to try to merge the free chunks into one free

chunk, rather than having three contiguous free chunks on the free list
● This is called “coalescing” free chunks

A Basic Heap Allocator (cont...)

18Punjab University College Of Information Technology (PUCIT)

Why not use brk() and sbrk()
Instructor:Arif Butt

C program use malloc family of functions to allocate & deallocate
memory on the heap instead of brk() & sbrk(), because:

● malloc functions are standardized as part of C language

● malloc functions are easier to use in threaded programs

● malloc functions provide a simple interface that allows memory to be
allocated in small units

● malloc functions allow us to deallocate blocks of memory

Why free() doesn't lower the program break? rather adds the block of
memory to a lists of free blocks to be used by future calls to malloc().
This is done for following reasons:

● Block of memory being freed is somewhere in the middle of the heap,
rather than at the end, so lowering the program break is not possible

● It minimizes the numbers of sbrk() calls that the program must
perform

19Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Example: allocated_block.c

$100 Question
When a process requests 1-24 B on heap, why the memory allocated is 32 B?
When a process requests 25-40 B on heap, why the memory allocated is 48 B?
When a process requests 41-56 B on heap, why the memory allocated is 64 B?
When a process requests 57-72 B on heap, why the memory allocated is 80 B?

20Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Common programming errors while using heap:

1. Reading/writing freed memory areas

2. Reading/writing memory addresses before or after the allocated
memory using faulty pointer arithmetic

3. Freeing the same piece of allocated memory more than once

4. Freeing heap memory by a pointer, that wasn't obtained by a call
to malloc package

5. Memory leaks, i.e., not freeing memory and keep just allocating it

Points to Ponder (Heap)

21Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Static checking using splint
Example: hellobug.c

22Punjab University College Of Information And Technology(PUCIT)

Instructor:Arif Butt

Tools and Libraries for
malloc debugging

23Punjab University College Of Information And Technology(PUCIT)

malloc Debugging libraries
Instructor:Arif Butt

● Tasks of finding dynamic memory allocation bugs can be eased
considerably by using the malloc debugging libraries that
are designed for this purpose

● In order to use these libraries we need to link our program against a
particular library instead of malloc package in the standard C library

● These libraries operates at the cost of slower run-time operation ,
increased memory consumption or both. So we should use them only for
debugging purpose, and then return to linking with the standard
malloc package for the production version of an application. Some
example libraries are
1. Electric Fence
2. Valgrind
3. Insure++
4. IBM Rational Purify

24Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Electric Fence Example:
hellobug.c

25Punjab University College Of Information And Technology(PUCIT)

valgrind Debugging Library
Instructor:Arif Butt

Valgrind is a suite of command line tools for debugging and profiling
● Memcheck: It is the default, which is a memory error detector
● Cachegrind: It is a cache and branch-prediction profiler. It help you

make your program run faster
● Callgrind: It is a call graph generating cache profiler
● Helgrind: It is a thread error detector
● Drd: It is also a thread error detector

While using valgrind, it is recommended to compile with options like
no optimization (-O0), and including debugging info (-g)

$ gcc -Wall -std=c99 -O0 -g prog1.c
$ valgrind [valgrind-options] yourprogram [yourprogram options]

$ valgrind ./a.out

26Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Valgrind Example:
faultyprogram.c

27Punjab University College Of Information Technology (PUCIT)

Things To Do
Instructor:Arif Butt

I f y o u h a v e p r o b l e m s v i s i t m e i n c o u n s e l i n g h o u r s

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

