
1 Maj (Retd) Dr. Muhammad Arif Butt (PUCIT) 

 

Linux Kernel Booting Process and System Initialization 
Today we are going to talk about a very famous term and that is booting process of an 

operating system. We all know that an operating system must itself be loaded into 

memory and it must be running before a user can load and execute different programs. 

The details may vary depending on the h/w platform and operating sytem, but roughly 

we can describe booting process into five phases: 

• BIOS/UEFI: Basic Input Output System is now replaced by Unified Extensible 

Firmware Interface which performs POST and then as per the prioritized boot 

order mentionend in CMOS selects the boot disk to execute MBR. 

• MBR/GPT: Master boot Record or Globally Unique Identifier Table (GPT) usually 

resides in the zero sector of the boot drive which is also called the Stage-1 boot 

loader. 

• GRUB: GRand Unified Boot loader is the default boot loader of Linux, which is 

responsible for loading the kernel into memory. 

• Kernel: After the kernel is loaded into memory it initializes itself, loads the initial 

RAM disk image containing a temporary file system with different Loadable 

Kernel Modules (LKM) that are used to load the actual/permanent root file 

system. Kernel then forks and executes system daemon (systemd/init) the 

grand-dady of all user space processes. 

• Systemd: The system daemon then executes different processes/scripts to bring 

the system in its default state which is normally graphical.tgt. Thus, giving a 

user interface to the user of the computer to interact with it. 

Note: Please do go through the man page of boot 

1. BIOS/UEFI Initialization 

Things start rolling when we press the power button of our computer. Once the 

motherboard is powered up it initializes its own firmware (chipset and other tidbits), and 

tries to get the CPU running. In case of a 32-bit Intel CPU, the eip register holds a 

magical address that is called the reset-vector. For all modern x86 processors this is the 



2 Maj (Retd) Dr. Muhammad Arif Butt (PUCIT) 

 

physical address 0xFFFFFFF0 (16 bytes below 4GiB). The instruction at this address is 

a jump instruction to the memory location mapped to the BIOS entry point (0xF0000), 

containing the BIOS code. BIOS code is there in Complementary Metal Oxide Semi-

conductor (CMOS), a battery powered memory chip on the mother board. This contains 

the prioritized boot order which can be altered by user if desired. It also contains the 

hard ware clock of the system. The BIOS code then executes and perform the following 

tasks: 

a. Performs Power-On-Self-Test (POST), which tests various h/w components 

attached with the system. A working video card takes us on monitor screen. In 

case of lack of video card / memory, it emits beep codes, e.g., repeated long 

beeps indicate memory problem.  

b. After POST, the BIOS wants to boot up an OS, from hard disk, USB flash drive, 

Optical disk or may be from Network. 

c. Finally, BIOS reads the first 512 bytes of bootable hard disk (zero sector) and 

loads the contents into memory location 0x7C00 

2. The Master Boot Record 

The contents of the zero sector of hard disk (512 bytes) contains the code that is known 

as Stage-1 boot loader (446 bytes). Can be Linux specific, Windows specific and can be 

even a virus. Please note that 

MBR is not located inside any 

partition, rather preceds the first 

partition. The first 440 bytes 

contain bootable code, followed by 

disk signature of 4 bytes and then 

two bytes containing NULL. Then we have four entries of 16 Bytes each containing 

information about primary partitions, and finally there is MBR signature of 2 bytes. 

• To view the Stage-1 boot loader, give following command: 
$ dd if=/dev/sda bs=440 count=1 | hexdump -C 

• To view the 2 Bytes MBR signature give following command: 
$ dd if=/dev/sda bs=512 count=1 | tail -c 2 | hexdump -C 
55 aa 
 



3 Maj (Retd) Dr. Muhammad Arif Butt (PUCIT) 

 

• To view the 4 Bytes Disk signature, give following command: 
$ dd if=/dev/sda bs=446 count=1 | tail -c 6 | hexdump -C 
98 64 9b af 00 00 

 

Now the problem is that this small piece of code inside MBR cannot load the kernel, as 

its is unaware of file system concept and requires a boot loader with file system driver. 

So, this 440 bytes of code is actually used to laod the actual boot loader (GRUB). 

 

3. The Boot Loader 

A boot loader is the first software program that runs when a computer starts. Different 

operating systems have support of different boot loaders. Linux support LInux Loader 

(LILO), and GRand Unified Boot loader (GRUB). The most latest Linux distributions 

these days support GRUB2, which can load all distributions of Linux, BSD UNIX, Mac 

OS X, and DOS. Micorsoft Windows support New Technology Loader (NTLDR). 

One must not confuse these boot loader programs with operating system installer 

programs like anaconda for RHEL and ubiquity for Debian Linux. 

Now there are three stages of GRUB2 booting process: 

a. Stage-1: We have already seen the 446 bytes boot.img is stored in the MBR. It is 

configured to load the Stage-1.5 boot loader. 

b. Stage 1.5: The code for Stage-1.5, called the core.img is of 30KB, which resides 

immediately after the MBR and before the first partition. This space is used to store 

file system drivers and loadable kernel modules which enable Stage-1.5 to load 

Stage-2 boot loader. 

c. Stage 2: To describe the stage2 boot loader first see the contents of a Linux /boot 

directory  

$ ls /boot/ 
initrd.img-3.13.0-43-generic   
System.map-3.13.0-43-generic  
config-3.13.0-43-generic   
vmlinuz-3.13.0-43-generic   
 



4 Maj (Retd) Dr. Muhammad Arif Butt (PUCIT) 

 

There is quite a useful stuff lying in the /boot directory. The four files of our interest 

are: 

• vmlinuz: The compressed, bootable kernel image. On Linux systems, vmlinuz is 

a statically linked executable file that contains the Linux kernel in one of 

the object file formats supported by Linux.The letter  z at the end denotes that it 

is compressed. 
• initrd.img: The initial RAM disk; an early root filesystem that allows your kernel 

to bootsrap and get essential device drivers to get the final, official root filesystem 
• config: A file that contains the configuration parameters for the kernel 
• System.map: Symbol table used by kernel 

If you happen to have multiple kernel versions available you may find these four files for 

all versions. Now this is the time that GRUB displays a list of all operating systems 

installed and wait for some time until it boots the default kernel with default command 

line arguments. Do view the contents of /boot/grub/grub.cfg, however, never 

make changes in this file. If you want to change the time out or the default kernel to be 

loaded make changes in the file /etc/default/grub instead. 

Before we move on to the next step, let us talk about some command line arguments 

that can be passed to linux kernel. The Linux kernel accepts certain command-line 

options or boot time parameters at the moment it is started.  In general, this is used to 

supply the kernel with information about hardware parameters that the kernel would not 

be able to determine on its own, or to avoid/override the values that the kernel would 

otherwise detect. Some of the important boot time parameters are: 

• 'init=...' This sets the initial command to be executed by the kernel.  If this 

is not set, or cannot be found, the kernel will try /sbin/init, then /etc/init, 

then /bin/init, then /bin/sh and panic if all of this fails. 

• 'root=...' This argument tells the kernel what device is to be used as the root 

filesystem while booting, default is the /dev/sda1 



5 Maj (Retd) Dr. Muhammad Arif Butt (PUCIT) 

 

• 'ro' and 'rw' ro tells the kernel to mount the root file system as read onlly. 

This is done so that fsck(1) program can check and repair Linux file system. 

rw is the default. 

• panic=N' By default a kernel do not reboot after a panic, but this option causes 

a kernel to reboot after N seconds 

• 'reboot=[warm|cold][,[bios|hard]]' By default a reboot is cold and 

hard. A cold reboot reset certain hardware, but might destroy not yet written data 

in a disk cache.  A warm reboot may be faster. A hard reboot asks the keyboard 

controller to pulse the reset line low, but there is at least one type of motherboard 

where that doesn't work.  The option 'reboot=bios' will instead jump through 

the BIOS.            

• debug' This argument will cause the kernel to also print messages logged at 

level KERN_DEBUG. 

Note: For more details, students are advised to go through the man page of 

bootparam and try passing some of these arguments to kernel while it reboots. 

                     

4. Kernel Initialization 

The steps performed in this phase are as follows: 

• Kernel is loaded into memory 

• It initializes/accesses the keyboard, monitor, disk controllers, timers … and sets 

up interrupt handling mechanisms. 

• Now the kernel needs to mount the root file system, which may be is on a 

partition having capabilities like Logical Volume Management, RAID, Network 

File System. Unfortunately, these features are not compiled into the Linux kernel, 

rather are present as LKM in the /lib/modules/ directory which is present on 

the root file system itself. So, a 100$ question is “How the Linux kernel access 

the LKMs for mounting the root file system which are present on the root file 

system itself?” The answer is Initial RAM Disk, present in the /boot/initrd.img. 



6 Maj (Retd) Dr. Muhammad Arif Butt (PUCIT) 

 

• So now the Linux kernel uncompress /boot/initrd.img and load/mount its 

contents in memory. Students can execute following command on the terminal to 

view the contents of this file: 

$ lsinitramfs /boot/initrd.img--4.19.0-kali1-amd64 

You can see almost all the directory hierarchy like bin, dev, lib, etc, which 

mirror the real/permanent file system. Moreover, there are lot of .ko files 

containing loadable kernel modules for various required tasks. So contents of 

initrd file serves as a temporary root file system and helps kernel to boot 

properly and load all the LKMs required to mount the actual root file system (be it 

on LVM or a RAID partition) 

• Kernel then executes the command pivot_root, which alters the root partition 

from initrd to /. This removes the initram file system from memory and 

establishes the permanent file system. 

• Kernel then initializes the scheduler with PID of zero. 

• Kernel then forks and executes /sbin/init or /bin/systemd, which both are 

a soft link to /lib/systemd/systemd program. Now this systemd, which is 

said to be the grand dady of all processes is responsible for initializing and 

establishing the entire user space. The kernel itself moves in the background 

waiting to be called by other processes. 

 

5. The Systemd Process 

Once the Kernel initialization process is completed, the control is there with system 

daemon, previously known as the init process. The systemd run various scripts in 

the directories /etc/rcx.d/, where x is the runlevel. There are startup scripts with 

names starting with an S and some kill scripts having names starting with a K and then 

followed by numbers. If the system is to enter in runlevel5, then all the S-scripts are 

executed in sequence to start different userspace processes and to carry out system 

initialization. For further details, students are advised to go through the man pages of 

runlevel, systemd, systemctl. More on it later… J  


