
1Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Lecture # 2.1
UNIX File System Architecture

Course: Advanced Operating System

Instructor: Arif Butt

Punjab University College of Information Technology (PUCIT)
University of the Punjab

2Punjab University College Of Information Technology (PUCIT)

Agenda
Instructor:Arif Butt

● Recap
● Disk geometry

● Disk partitioning

● File system mounting

● File System Architecture
● Data structures involved in FSA
● Connection to an opened file

● The open-read-write-close Paradigm

3Punjab University College Of Information Technology (PUCIT)

Agenda
Instructor:Arif Butt

● Repositioning current file offset using lseek()
● Creating and deleting hard and soft links to a file using link(),
symlink(), unlink(), and remove()

● Changing ownership of a file using chown(), and fchown()
● Changing file mode creation mask and permissions on a file using
umask(), chmod(), and fchmod()

● Checking permissions on a file using access()
● I/O redirection using dup(), and dup2()
● What all we can do with fcntl()

4Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

OS with Linux Lec#16
Hard Disk Geometry

5Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

OS with Linux Lec#17
Partitioning a Hard Disk

6Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

OS with Linux Lec#18
Formatting a Hard Disk

7Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

OS with Linux Lec#19
Mounting a File System

8Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

OS with Linux Lec#20
File System Architecture

9Punjab University College Of Information And Technology (PUCIT)

Schematic Structure of a Unix File System
Instructor:Arif Butt

446 16 16 16 16 2

1.FS type of this partition
2.Data block size
3.Total blocks
4.Info about free and allocated blocks

sudo tune2fs -l /dev/sda1 | less
df -i /dev/sda1

10Punjab University College Of Information And Technology (PUCIT)

Structure of UNIX Inode
Instructor:Arif Butt

11Punjab University College Of Information And Technology (PUCIT)

File System in Practice (Creating a file)
Instructor:Arif Butt

 - - - - B A - - - C
47

$ echo “This is text......” 1> /home/arif/f1.txt

54 .

6 ..

47 f1.txt

125 f2.txt

34 dir1

/home/arif/

150 600 700

Data Block numbers

Inode number

Owner

Group

Time Stamps

File Size

Permissions

10 x Dir Ptrs
...
...
...

Single I.D ptr

Double I.D ptr

Triple I.D ptr

inode Block # 47

12Punjab University College Of Information And Technology (PUCIT)

File System in Practice (Understanding directories)

Instructor:Arif Butt

y

demodir

x

a

x

c

copytox

d2

hltox

d1

13Punjab University College Of Information And Technology (PUCIT)

File System in Practice (Understanding directories)

Instructor:Arif Butt

$ls -iaR demodir/
demodir/:
2621457 . 2629351 .. 2627038 a 2627039 c
2627033 y

demodir/a:
2627038 . 2621457 .. 2627040 x
demodir/c:
2627039 . 2621457 .. 2627041 d1 2627042 d2
demodir/c/d1:
2627041 . 2627039 .. 2627040 hltox
demodir/c/d2:
2627042 . 2627039 .. 2627043 copytox

14Punjab University College Of Information And Technology (PUCIT)

File System in Practice (Understanding directories)

Instructor:Arif Butt

demodir

a

457 .

351 ..

038 a

039 c

033 y

038 .

457 ..

040 x

039 .

457 ..

041 d1

042 d2

c

041 .

039 ..

040 hltox

042 .

039 ..

043 copytox

d1 d2

15Punjab University College Of Information And Technology (PUCIT)

File System in Practice (Accessing a file)
Instructor:Arif Butt

● Searches directories for file name
● Locate and read inode 32
● Checks for permissions. (userID vs file owner/gp/others)
● Go to the data blocks one by one, the first 10 block addresses are in

inode block. Next in single, double and tripple indirect blocks

$ cat /home/arif/file1

16Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

Review
Connection of an Opened File

17Punjab University College Of Information And Technology(PUCIT)

File Descriptor to File Contents
Instructor:Arif Butt

Fd flags File ptr

PPFDT

0

1

2

3

4

5

File
offset

Status
flags

Inode
pointer

System Wide File Table

Type Pmns Owner Locks

Inode Table

0

54

75

93

233

13
12

File Descriptor Purpose POSIX Name stdio Stream

0 Standard input STDIN_FILENO stdin

1 Standard output STDOUT_FILENO stdout

2 Standard error STDERR_FILENO stderr

Access mode flags
O_RDONLY, O_WRONLY, O_RDWR

Open time flags
O_CREAT, O_TRUNC, O_EXCL

Operating mode flags
O_APPEND, O_SYNC, O_NONBLOCK

File Status Flags

18Punjab University College Of Information And Technology (PUCIT)

Relationship between fd and Open files
Instructor:Arif Butt

Fd flags File ptr

PPFDT
Process A

0

1
2

3
4

OPENMAX-1

5

File
offset

Status
flags

Inode
pointer

System Wide File Table

Type Pmns Owner Locks

Inode Table

0

54

75

93

233

13
12

A process can open a file twice. If this is done by calling open() twice, then there will
be two different entries in PPFTD as well as in SWFT for that single file

19Punjab University College Of Information And Technology (PUCIT)

Relationship between fd and Open files
Instructor:Arif Butt

Fd flags File ptr

PPFDT
Process A

0

1
2

3
4

OPENMAX-1

5

File
offset

Status
flags

Inode
pointer

System Wide File Table

Type Pmns Owner Locks

Inode Table

0

54

75

93

233

13
12

A process can open a file twice. If this is done by calling dup(), then there will be two
entries in PPFDT but only one entry in SWFT

20Punjab University College Of Information And Technology (PUCIT)

Relationship between fd and Open files
Instructor:Arif Butt

Fd flags File ptr

PPFDT
Process A

0

1
2

3
4

OPENMAX-1

5

Fd flags File ptr

PPFDT
Process B

0

1
2

3
4

OPENMAX-1

5

File
offset

Status
flags

Inode
pointer

System Wide File Table

Type Pmns Owner Locks

Inode Table

0

54

75

93

233

13
12

If two different processes opens the same file by calling open(),
there will be two different entries in SWFT

21Punjab University College Of Information And Technology(PUCIT)

Relationship between fd and Open files
Instructor:Arif Butt

Fd flags File ptr

PPFDT
Process A

0

1
2

3
4

OPENMAX-1

5

Fd flags File ptr

PPFDT
Child Process of A

0

1
2

3
4

OPENMAX-1

5

File
offset

Status
flags

Inode
pointer

System Wide File Table

Type Pmns Owner Locks

Inode Table

0

54

75

93

233

13
12

If a process opens a file by calling open(), and later fork(), then
there will be only one entry in SWFT

22Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

Universal I/O Modal

23Punjab University College Of Information And Technology (PUCIT)

open(), read(), write(), close() paradigm
Instructor:Arif Butt

Following are the four key system calls for performing file I/O (programming
languages and software packages typically employ these calls indirectly via I/O libraries):

● fd = open(pathname, flags, mode) opens the file identified by
pathname, returning a file descriptor used to refer to the open file in subsequent
calls. If the file doesn’t exist, open() may create it, depending on the settings of
the flags bit- mask argument. The flags argument also specifies whether the file is
to be opened for reading, writing, or both. The mode argument specifies the
permissions to be placed on the file if it is created by this call. If the open() call
is not being used to create a file, this argument is ignored and can be omitted.

● numread = read(fd, buffer, count) reads at most count bytes from
the open file referred to by fd and stores them in buffer. The read() call returns
the number of bytes actually read. If no further bytes could be read (i.e., end-of-file
was encountered), read() returns 0.

● numwritten = write(fd, buffer, count) writes up to count bytes
from buffer to the open file referred to by fd. The write() call returns the
number of bytes actually written, which may be less than count.

● status = close(fd) is called after all I/O has been completed, in order to
release the file descriptor fd and its associated kernel resources.

24Punjab University College Of Information And Technology (PUCIT)

read() System call
Instructor:Arif Butt

● Attempts to read upto count number of bytes from the file descriptor
fd into the buffer starting at memory address buf

● If count is 0 then read() return 0. If count is greater than
SSIZE_MAX then the result is unspecified

● On success, returns number of bytes read, which can be less than count
if EOF is encountered. Before a successful return the current file offset
is incremented by the number of bytes actually read

● In case of regular file having more than count bytes, it is guaranteed
that read will read count bytes and then will return However, in
case of fifos or sockets this is not guaranteed

● On failure, returns -1 and set errno. Check reasons in man page
● A return of zero indicates end-of-file

#include<unistd.h>
ssize_t read(int fd,void *buf,size_t count);

25Punjab University College Of Information And Technology(PUCIT)

Instructor:Arif Butt

● This function read count number of bytes from the file
descriptor fd at offset offset into the buffer starting at
memory address buf

● On success; Number of bytes read is returned and current file
offset is not advanced to new location

● On failure; Return -1 and errno is set to indicate the error

● A return value of 0 means nothing is read

#include<unistd.h>
ssize_t pread(int fd, void *buf, size_t count,
 off_t offset);

pread() System call

26Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

● Attempts to write up to count number of bytes to the file referenced
by file descriptor fd from the buffer starting at memory address buf.
The data is written starting with the current location of current f ile
offset

● On success; Number of bytes written is returned which may be less
than count. Current file offset is advanced to new location

● In case of regular file, the call guarantees writing count bytes, if the
disk is not full or the file size has not exceeded the maximum file size
supported by system. However, in case of fifos or sockets this is
not guaranteed

● On failure; Return -1 and errno is set appropriately. Check reasons in
man page

● Return 0 indicates nothing is written

#include<unistd.h>
ssize_t write(int fd,void *buf,size_t count);

write() System call

27Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

● This function write count number of bytes from memory
address pointed to by buf to the file referenced by file
descriptor fd at offset offset

● On success; Number of bytes written is returned and current file
offset is not advanced to new location

● On failure; Return -1 and errno is set to indicate the error

● A return value of 0 indicates nothing is written

#include<unistd.h>
ssize_t pwrite(int fd,void *buf,size_t count,
 off_t offset);

pwrite() System call

28Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

● Close a file descriptor fd so that it is no longer referenced in the
PPFDT and may be reused to a later call of open(), or dup()

● Closing a file also releases any record locks that a process may
have on file

● When a process terminates, all open files are automatically
closed by kernel

● On Success; Return 0

● On failure; Return -1 and errno is set appropriately

#include<unistd.h>
int close(int fd)

close() System call

29Punjab University College Of Information And Technology(PUCIT)

Instructor:Arif Butt

● Once performing blocking I/O using a read() or write() system
calls, if the call is interrupted during its execution we need to restart
the system call. A read() on a keyboard normally blocks if the user
has not entered anything. Similarly if a read() is trying to read an
empty pipe it blocks

● In such scenarios, most modern UNIX implementations restart such
system calls automatically. However, if you are not sure whether your
code would be running on such a system, you need to write code to
explicitly handle the restarting of an interrupted system call

Restarting a System call

repeat:
if((rv = read(fd, buff, SIZE)) == -1){

switch(errno){
case EINTR: goto repeat;
….....

}
}

30Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

● The file to be opened is identified by the pathname argument. If
pathname is a symbolic link, it is dereferenced

● On success, open() returns a file descriptor that is used to refer
to the file in subsequent system calls

● On error, open() returns –1 and errno is set accordingly
● The file status flags argument is a bit mask that:

a) Must include one of the three file access modes (O_RDONLY,
O_WRONLY, O_RDWR)

b) Zero or more file open time flags, (O_CREAT, O_TRUNC, O_EXCL)
c) Zero or more file operating mode flags (O_APPEND, O_SYNC,

O_NONBLOCK)

int open(char *pathname, int flags);
int open(char *pathname, int flags, mode_t mode);

open() System call

31Punjab University College Of Information And Technology (PUCIT)

Flags used by open()
Instructor:Arif Butt

Flags Description

O_RDONLY Open file in read only mode

O_WRONLY Open file in write only mode

O_RDWR Open file in read write mode

O_CREAT If file does not already exist , it makes a new file. If we specify
O_CREAT, then we must supply a mode argument in the open() call;
otherwise, the permissions of the new file will be set to some random
value from the stack

O_APPEND Writes are always appended to the end of the file

O_TRUNC If the file already exists and is a regular file, then truncate it to zero length,
destroying any existing data

O_EXCL This flag is used in conjunction with O_CREAT to indicate that if the file
already exists, it should not be opened; instead, open() should fail, with
errno set to EEXIST

O_CLOEXEC Enable the close-on-exec flag (FD_CLOEXEC) for the new file
descriptor. By default, the file descriptor will remain open across an
execve(). Normally used in multithreaded programs to avoid the race
conditions

32Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

● When open() is used to create a new file, the mode bit-mask argument
specifies the permissions to be placed on the file. If the open() call
doesn’t specify O_CREAT, mode can be omitted

● Mode argument can be specified as a number (typically in octal) or,
preferably, by ORing (|) together zero or more of the bit-mask constants.
These constants are:

● Permissions actually placed on a new file depend not just on the mode
argument, but also on the process umask and can be computed as

mode & ~umask
● This mode only applies to future accesses of the newly created file

Mode argument of open() System call

S_IRWXU 0700 S_IRWXG 0070 S_IRWXO 0007

S_IRUSR 0400 S_IRGRP 0040 S_IROTH 0004

S_IWUSR 0200 S_IWGRP 0020 S_IWOTH 0002

S_IXUSR 0100 S_IXGRP 0010 S_IXOTH 0001

33Punjab University College Of Information And Technology (PUCIT)

File Descriptor returned by open()
Instructor:Arif Butt

● SUSv3 specifies that if open() succeeds, it is guaranteed to use the
lowest-numbered unused file descriptor for the process. We can use this
feature to ensure that a file is opened using a particular file descriptor

● For example, the following sequence ensures that a file is opened using
standard input (file descriptor 0)

 close(STDIN_FILENO);
 fd = open(pathname, O_RDONLY);

● Since file descriptor 0 is unused, open() is guaranteed to open the file
using that descriptor

34Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

● In early UNIX implementations, open() had only two arguments and could not
be used to create a new file. Instead, the creat() system call was used to create
and open a new file

● The creat() system call creates and opens a new file with the given pathname,
or if the file already exists, opens the file and truncates it to zero length

● On success, creat() returns a file descriptor that can be used in subsequent
system calls. Calling creat() is equivalent to the following open() call:

fd = open(pathname, O_WRONLY | O_CREAT | O_TRUNC, mode);

● Because the open() flags argument provides greater control over how the file is
opened (e.g., we can specify O_RDWR instead of O_WRONLY), creat() is
now obsolete, although it may still be seen in older programs

● So, using creat(), a file is opened only for writing. If we were creating a
temporary file that we wanted to write and then read back, we had to call
creat(), close() and then open()

int creat(char *pathname, mode_t mode);

creat() System call

35Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

Repositioning CFO of an opened file

36Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

off_t lseek(int fd,off_t offset,int whence);

lseek() System call

● For each open file, the kernel records a file offset, also called current file
offset (cfo), which is there in the SWFT. This is the location in the file at
which the next read() or write() will commence. The file offset is
expressed as an ordinal byte position relative to the start of the file. The first
byte of the file is at offset 0

● The file offset is set to point to the start of the file when the file is opened
(unless the O_APPEND option is specified) and is automatically adjusted
by each subsequent call to read() or write() so that it points to the
next byte of the file after the byte(s) just read or written. Thus, successive
read() and write() calls progress sequentially through a file

● The lseek() system call adjusts the file offset of the open file referred to
by the file descriptor fd, according to the values specified in offset and
whence. On success, returns the resulting offset location and -1 on failure

37Punjab University College Of Information And Technology (PUCIT)

Interpreting whence argument of lseek()
Instructor:Arif Butt

0 1 n-2 n-1 n n+1 . . .

SEEK_SET SEEK_CUR SEEK_END

whence value

File containing n bytes of data Hole past EOF

off_t lseek(int fd,off_t offset,int whence);

Examples
off_t posn;
posn = lseek(fd, 54, SEEK_SET);
posn = lseek(fd, +/-54, SEEK_CUR);
posn = lseek(fd, +/-54, SEEK_END);

38Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

● The directive “whence” can take following five values:

WHENCE Description

SEEK_SET 0 The cfo is set offset bytes from the beginning of the file

SEEK_CUR 1 The cfo is set offset bytes from current value of cfo

SEEK_END 2 The cfo is set offset bytes from the end of the file

SEEK_HOLE 3 The cfo is set to start of the next hole greater than or equal to offset

SEEK_DATA 4 The cfo is set to start of the next non-hole (i.e., data region) greater than
or equal to offset

lseek() System call (cont...)

39Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

Examples:
lseek1.c, lseek2.c, lseek3.c

40Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

 Misc File Related System Calls

41Punjab University College Of Information And Technology (PUCIT)

rename() Function
Instructor:Arif Butt

int rename(const char*oldpath,const char* newpath);

● A programmer can rename a file or a directory with the
rename() library function

● A sample code snippet that renames a file named file1.txt to
file2.txt in the present working directory is shown below:

if(rename(“file1”,”file2”) == -1)
perror(“rename(1)”);

42Punjab University College Of Information And Technology (PUCIT)

remove() and unlink()
Instructor:Arif Butt

int remove(const char *pathname);
int unlink(const char* pathname);

● Remove is a library call that deletes a name from file system. It calls
unlink() for files and rmdir() for directories

● However, if any process has this file open currently, the file won't be
actually erased until the last process holding it open closes it. Until
then it will be removed from the directory (i.e., ls won't show it), but
not from disk

● When a file is deleted, the OS Kernel performs following tasks:
i. Frees the inode number associated with that file
ii. Frees all the data blocks associated with that file and add them to

the list of free blocks
iii. Delete the entry from the directory containing that file

● The metadata of the file is still there in the inode block and the data of
the file in its data blocks (U just need to know how to access those
blocks)

43Punjab University College Of Information And Technology (PUCIT)

Symlink and link Function
Instructor:Arif Butt

int symlink(const char* oldpath, const char* newpath);
int link(const char* oldpath, const char* newpath);

if(symlink(“/tmp/file1”,”/home/arif/slinktofile1”) == -1)
{ perror(“symlink”); exit(1);}

if(link(“/tmp/file1”,”/home/arif/hlinktofile1”) == -1)
{ perror(“link”); exit(1); }

Review OS with Linux Video Lec 21 for detailed concepts of Links

● The link() and symlink() functions are used to create a
hard link and a soft link to a file

● Following sample code snippets show the usage of these library
functions:

44Punjab University College Of Information And Technology(PUCIT)

chown ,fchown and lchown Function
Instructor:Arif Butt

int chown(const char *pathname, uid_t owner, gid_t group);
int fchown(int fd, uid_t owner, gid_t group);
int lchown(const char *linkname, uid_t owner,gid_t group);

● These system calls change the owner and group of the file
specified by path or file descriptor

● If owner or group is specified as -1, then that ID is not changed
● Only a process with super user privileges can use these functions

to change any file user ID and group ID
● However, if a process effective user ID matches a file user ID and

its effective group ID, the process can change the file group ID
only (Will discuss this later)

● lchown() is like chown(), but does not dereference symbolic
links

45Punjab University College Of Information And Technology(PUCIT)

chmod and fchmod System Call

● These two functions allow us to change the file access permissions
for an existing file

● The chmod function operates on the specified file, whereas the
fchmod function operates on a file that has already been opened
using its file descriptor

● The mode is the same as discussed in the flags argument of open()

● Following code snippet will give the owner read and write
permissions to the file and deny access to all other users

Instructor:Arif Butt

int chmod(const char *pathname, mode_t mode);
int fchmod(int fd, mode_t mode);

if(chmod(“file.txt”,S_IRUSR|S_IWUSR) == -1){

 perror(“chmod”); exit(1);}

46Punjab University College Of Information And Technology(PUCIT)

umask Function

● The umask() function sets the file mode creation “mask” for
the process and returns the previous value

● Remember the mask value of a process is the same as that of its
creating shell, i.e. its parent. (mask value is inherited after fork)

● The file mode creation mask is used whenever the process
creates a new file or a new directory

Review OS with Linux Video Lec 22 and 23

Instructor:Arif Butt

mode_t umask(mode_t mask);

umask(0077);
int fd = open("myfile.txt",O_CREAT|O_RDWR,0633);

47Punjab University College Of Information And Technology(PUCIT)

access() System Call

● The access() system call determines whether the calling process has
access permission to a file or not and it can also check for file existence
as well

● The mode argument is a bit mask consisting of one or more of the
permission constants shown in the table below:

● If a process has all the specified permissions the return value is 0,
otherwise the return value is -1 & sets errno to EACCES

● The open() system call performs its access tests based on the EUID
and EGID, while the access() system call bases its tests on the real
UID & GID

Instructor:Arif Butt

int access(const char *pathname, int mode);

Mode Description

R_OK Test for read permission

W_OK Test for write permission

X_OK Test for execute permission

F_OK Test for existence of file

48Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

Examples:
access.c, truncate.c, umask1.c,

umask2.c

49Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

I/O Redirection using dup()
Review OS with Linux Video Lec 8

50Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

● The dup() call takes oldfd, an open file descriptor, and returns a
new descriptor that refers to the same open file description

● The old and the new descriptor both point to the same entry in the
SWFT. After a successful return from these function , old and new fd's
can be used interchangeably

● The new descriptor is guaranteed to be the lowest unused file
descriptor.

int dup(int oldfd);

dup() System call

Fd flags File ptr

PPFDT

0

1

2

3

4

5

stdin
stdout

stderr
file1.txt

Example: dup.c

51Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

Facts about I/O Redirection on the Shell

Fd flags File ptr

PPFDT

0

1

2

3

4

OPENMAX-1

5

stdin

stdout

$ cat

stderr

52Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

Facts about I/O Redirection on the Shell

Fd flags File ptr

PPFDT

0

1

2

3

4

OPENMAX-1

5

f1.txt

f2.txt

$ cat 0< f1.txt 1> f2.txt 2>&1

Example: listargs.c

100$ Q:
How many command line arguments are passed to the cat program?

$./a.out 0< /etc/passwd 1> /dev/tty 2> errfile

53Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

● We know that dup() call guarantees that the new descriptor returned
is the lowest unused file descriptor

● If we run the following LOCs, the open call will return 3, the dup
call will return the lowest unused descriptor which will be zero. So
finally descriptor zero points to the opened file instead of stdin

fd = open(...);

close(0);

newfd = dup(fd);
● To make the above code simpler, and to ensure we always get the file

descriptor we want, we can use dup2()

int dup(int oldfd);

dup() System call

54Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

● The dup2() system call makes a duplicate of the file descriptor given
in oldfd using the descriptor number supplied in newfd

● If the file descriptor specified in newfd is already open, dup2()
closes it first

● We can simplify the preceding calls to close(0) and dup(fd) on
previous slide to the following:
dup2(fd, 0);

● A successful dup2() call returns the number of the duplicate
descriptor (i.e., the value passed in newfd)

● If oldfd is a valid file descriptor, and oldfd and newfd have the
same value, then dup2() does nothing—newfd is not closed, and
dup2() returns the newfd

int dup2(int oldfd, int newfd);

dup2() System call

55Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

● The dup3() system call performs the same task as dup2(), but adds an
additional argument, flags, that is a bit mask that modifies the behavior of
the system call

● At the time of this writing, dup3() supports one flag, O_CLOEXEC,
which causes the kernel to enable the close-on-exec flag (FD_CLOEXEC)
for the new file descriptor

● When a file descriptor is opened (as with open or dup), this bit is initially
cleared on the new file descriptor, meaning that descriptor will survive into
the new program after exec

● The dup3() system call is new in Linux 2.6.27, and is Linux-specific

int dup3(int oldfd, int newfd, int flags);

dup3() System call

56Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

Method 1: close-open (stdinredir1.c)
close(0);
fd = open("/etc/passwd", O_RDONLY);

Method 2: open-close-dup-close (stdinredir2.c)
fd = open("/etc/passwd", O_RDONLY);
close(0);
newfd = dup(fd);
close(fd);

Method 3: open-dup2-close (stdinredir3.c)
fd = open("/etc/passwd", O_RDONLY);
newfd = dup2(fd, 0);
close(fd);

Examples: Input Redirection

57Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

fcntl() System Call

58Punjab University College Of Information And Technology (PUCIT)

What fcntl() can do?
Instructor:Arif Butt

Fd flags File ptr

PPFDT

0

1

2

3

4

5

File
offset

Status
flags

Inode
pointer

System Wide File Table

Type Pmns Owner Locks

Inode Table

0

54

75

93

233

13

int fcntl(int fd,int cmd, long arg);

59Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

The fcntl() system call can be used instead of dup() to return a
duplicate file descriptor of an already opened file. The second argument
passed to fcntl() for this purpose is F_DUPFD. It will return the
lowest-numbered available file descriptor greater than or equal to the
third argument

int fd = open("/etc/passwd", O_RDONLY);
printf("The first file descriptor is %d\n",fd);
int rv = fcntl(fd, F_DUPFD, 54);
printf("Duplicate file descriptor is %d\n",rv);

fcntl() (Duplicate file descriptor)
int fcntl(int fd,int cmd, long arg);

Example: fcntl_dup.c

60Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

The fcntl() system call can be used to get the file status flags of an
already opened file from SWFT. For example suppose you have opened a
file and want to check the file access mode flags (O_RDONLY,
O_WRONLY, O_RDWR). The second argument passed to fcntl() for
this purpose is F_GETFL and the third argument is ignored. It will return
all the file status flags in an integer variable which when bitwise anded
with the O_ACCMODE constant will tell you about the permissions. The
constants can be found in /usr/include/asm-generic/fcntl.h

int fd = open(“file”, O_RDONLY);
int flags = fcntl(fd, F_GETFL, 0);
flags = flags & O_ACCMODE;
if (flags == O_RDONLY) printf("read only\n");

fcntl() (Get file status flags)

Example: fcntl_checkpmns.c

int fcntl(int fd,int cmd, long arg);

61Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

O_APPEND flag is used to ensure that each call to write() implicitly
includes an lseek to the end of the file. Moreover, the kernel combines
lseek() and write() into an atomic operation. Suppose you forgot to
set this flag while making the open() call. Now if you have already
opened a file and want to set O_APPEND flag, you can do that with
fcntl() system call with a simple three-step procedure:

int flags = fcntl(fd, F_GETFL, 0); //get settings
flags = flags | O_APPEND; //modify settings
fcntl(fd, F_SETFL, flags); //set them back

fcntl() (Set file operating mode flags)
int fcntl(int fd,int cmd, long arg);

62Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

O_SYNC flag is used to turn off disk buffering. It tells the kernel that call
to write() should return only when the bytes are written to the actual
hardware rather than the default action of returning when the bytes are
copied to a kernel buffer. However, setting O_SYNC eliminates all the
efficiency kernel buffering provides. Suppose you want to set this flag, but
forgot to set it while making the open() call. Now if you have already
opened a file and want to turn off Kernel disk buffering, you can do that
with fcntl() system call with a simple three-step procedure:

int flags = fcntl(fd, F_GETFL, 0); //get settings
flags = flags | O_SYNC; //modify settings
fcntl(fd, F_SETFL, flags); //set them back

int fcntl(int fd,int cmd, long arg);

fcntl() (Set file operating mode flags)

63Punjab University College Of Information And Technology(PUCIT)

Instructor:Arif Butt

Types of Locking Mechanisms:
● Advisory locks: Kernel maintains knowledge of all files that have been

locked by a process. But it does not prevent a process from modifying that
file. The other process can, however, check before modifying that the file is
locked by some other process. Thus advisory locks require proper
coordination between the processes

● Mandatory Locks: are strict implications, in which the kernel checks every
read and write request to verify that the operation does not interfere with a
lock held by a process. Locking in most UNIX machines is by default
advisory. Mandatory locks are also supported but it needs special
configuration

File / Record Locking

Types of Advisory Locks:
● Read Locks/Shared Locks: Locks in which you can read, but if you want to

write you’ll have to wait for everyone to finish reading. Multiple read
locks can co-exist

● Write Locks/Exclusive Locks: Locks in which there is a single writer.
Everyone else has to wait for doing anything else (reading or writing). Only
one write lock can exist at a time

64Punjab University College Of Information And Technology (PUCIT)

Instructor:Arif Butt

● The fcntl() system call can be used for achieving read/write locks
on a complete file or part of a file

● To lock a file the second argument to fcntl() should be F_SETLK
for a non-blocking call, or F_SETLKW for a blocking call

● The third argument to fcntl() is a pointer to a variable of type
struct flock (See its details in man page)

● Locks acquired using fcntl() are not inherited across fork(). But
are preserved across execve()

fcntl() (File/Record Locking)
int fcntl(int fd,int cmd, struct flock* lock);

Example: fcntl_lock.c

65Punjab University College Of Information Technology (PUCIT)

Things To Do
Instructor:Arif Butt

I f y o u h a v e p r o b l e m s v i s i t m e i n c o u n s e l i n g h o u r s

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65

