
1Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Lecture # 2.5
Programming the Terminal

Devices

Course: Advanced Operating System

Instructor: Arif Butt

Punjab University College of Information Technology (PUCIT)
University of the Punjab

Source Code files available at: https://bitbucket.org/arifpucit/spvl-repo/src
Lecture Slides available at: http://arifbutt.me

2Punjab University College Of Information Technology (PUCIT)

Agenda
Instructor:Arif Butt

● In UNIX every thing is a file
● Similarities and differences between regular & device Files
● Reading/Writing on some one's terminal
● Modes of terminal driver
● Attributes of terminal driver
● Modifying terminal attributes using stty(1)
● Where terminal attributes are saved?
● Modifying terminal attributes using

● system() library call
● tcgetattr() and tcsetattr() library calls
● ioctl() system call

Review OS with LinuxVideo Lec#25 on Device files
Review OS with LinuxVideo Lec#26 on Terminal attributes

3

Instructor:Arif Butt

In UNIX
Everything is a File

Punjab University College Of Information Technology (PUCIT)

4

Punjab University College Of Information Technology (PUCIT)

 File Types in UNIX based Systems
Instructor:Arif Butt

● Regular files (-)

● Directories (d)

● Symbolic Links (l)

● Character special files (c)

● Block special files (b)

● Named pipes (p)

● Sockets (s)

5

Punjab University College Of Information Technology (PUCIT)

 Device Files
Instructor:Arif Butt

Character Special Files (c)

These files represents hardware devices that reads or writes a serial
stream of data bytes. Devices connected via serial/parallel ports fall
in this category. Examples of such devices are terminal devices,
sound cards, and tape drives

Block special files (b)

These files represents hardware devices that reads or writes data in
fixed size blocks. Unlike serial devices they provide random access
to data stored on the device. Examples of such devices are HDD,
SSD, and cdrom

6Punjab University College Of Information And Technology(PUCIT)

Similarities Between Devices & Regular Files
Instructor:Arif Butt

P1 Terminal

For a process, a terminal is a source/destination of data

P1 Microphone

Speaker

Sound Card

For a process, a sound card is a source/destination of data

7Punjab University College Of Information And Technology(PUCIT)

Overview of Device Files
Instructor:Arif Butt

P1

Operating System KernelMicrophone

Speaker Terminal

User

8

Punjab University College Of Information Technology (PUCIT)

 Differences Between Device & Regular Files
Instructor:Arif Butt

● A regular file is a container, while a device file is a connection
● The inode block of a regular file contains pointer that points to

its data blocks, while the inode block of a device file contains
pointer that points to a function inside the kernel called the
device driver

● When you see the long listing, a regular file shows its size
while a device file displays the major and minor number of the
device driver at the place of size when you see its long listing

Device Numbers:
Linux identify devices using a 16 bit number divided into two parts
● Major number (8 bits) that identifies the driver program
● Minor number (8 bits) that is used by the driver program to identify the

instance

9

Punjab University College Of Information Technology (PUCIT)

 The /dev/ Directory
Instructor:Arif Butt

● Describe the contents of /dev/ directory and show the
difference between a device file and a regular file:

$ ls -lis /dev
$ ls -l /dev/ | grep sda
$ ls -l /dev/ | grep tty | less

● Create your own character and block special files:
$ sudo mknod-m 0666 mychfile c 555 1
$ sudo mknod -m 0666 myblk b 444 1

● Discuss the /dev/pts/ directory:
$ echo “hello” 1> /dev/pts/3
$ cp armyfriends.txt /dev/pts/5

10

Punjab University College Of Information Technology (PUCIT)

 The /dev/null and /dev/zero Files
Instructor:Arif Butt

These are character special files. Any write in these files is
discarded. Any read in /dev/null return an EOF. Any
read in /dev/zero return an infinite trail of '\0' bytes:
$ dd if=/dev/null of=./mynull count=2 bs=1024
$ dd if=/dev/zero of=./myzero count=2 bs=1024

Usage:
● Whenever you are not interested in the o/p or error of your

program, you can redirect it to these files
● Whenever you want to read an empty file and check the behavior

of your program, you read the /dev/null file
● Whenever you want to create file of very large size containing

zeros, you use dd command and read the /dev/zero file

11

Punjab University College Of Information Technology (PUCIT)

 The /dev/full File
Instructor:Arif Butt

● This is also a character special file. Any write in this file
return ENOSPC error, so it can be used to test how a
program handles disk-full errors. Any read from
/dev/zero return an infinite trail of '\0' characters
(just like the /dev/zero file). It has a major device
number of 1 and minor device number of 7. If it does not
exist on your machine you can create it using following
command:

$ sudo mknod -m 666 /dev/full c 1 7
$ sudo chown root:root /dev/full
$ cat 0< /etc/passwd 1> /dev/full

cat: write error: No space left on device

12

Punjab University College Of Information Technology (PUCIT)

 The /dev/random and /dev/urandom Files
Instructor:Arif Butt

The character special files /dev/random and /dev/urandom
provide an interface to the kernel's random number generator. Any
read from these files return an infinite trail of random bytes using a
pseudorandom number generator:
$ cat /dev/urandom
$ od /dev/urandom
$ dd if=/dev/urandom of=./temp count=1 bs=100

Any write in these file(s) will update the entropy pool with the data
written. This entropy pool is used to create the random numbers.
The random number generator gathers environmental noise from
device drivers and other sources into this entropy pool
The /dev/random interface is considered a legacy interface,
and /dev/urandom is preferred, with the exception of
applications which require randomness during early boot time

13

Instructor:Arif Butt

Proof of concepts
On Linux Terminal

Punjab University College Of Information Technology (PUCIT)

/dev/, mknod(1)

14

Punjab University College Of Information Technology (PUCIT)

 Modes of Terminal Driver
Instructor:Arif Butt

Canonical Mode:
● Input is made available line by line, and the line goes to the

process only after the user presses the Enter key (mean while
it is buffered inside the tty driver program)

● Line editing is enabled

Non-Canonical Mode:
● Input is made available immediately as a key is pressed,

without the need to press the Enter key (no buffering is done
by the driver program)

● Line editing is disabled

15

Punjab University College Of Information Technology (PUCIT)

 Attributes of Terminal Driver
Instructor:Arif Butt

● Input Processing: Processing
performed by tty driver on the
characters received via key board,
before sending them to the process.
Example: icrnl

P1 Terminal

Actions performed by tty driver on the data passing through it can
be grouped into four main categories:

● Output Processing: Processing performed by tty driver on the
characters received from process, before sending them to the
display unit. Example: onlcr

● Control Processing: How characters are represented? Example:
cs8

● Local Processing: What the driver do while the characters are
inside the driver? Example: icanon, echo

16

Punjab University College Of Information Technology (PUCIT)

 Attributes of Terminal Drivers
Instructor:Arif Butt

100$ Question
How can we examine and modify the value of Terminal

Attributes?

17

Instructor:Arif Butt

Accessing & Modifying
Terminal Attributes using

Punjab University College Of Information Technology (PUCIT)

stty(1), mywrite.c, mycat.c

18

Punjab University College Of Information Technology (PUCIT)

 Programming the Terminal Driver
Instructor:Arif Butt

There are three ways you can get/set the attributes of
terminal driver inside your C program:
● Use system() library call
● Use tcgetattr() and tcsetattr() library calls
● Use ioctl() system call

19

Instructor:Arif Butt

int system(const char* command);
● It executes a command specified in cmd by calling /bin/bash -c

command and returns after the command has been completed

● Return -1 on error and the return status of the cmd other wise

● Main cost of system() is inefficiency. Executing a command using
system() requires the creation of at least two processes

● One for the shell

● Other for the command(s) it executes

system() Library Call

Punjab University College Of Information Technology (PUCIT)

20

Instructor:Arif Butt

Accessing & Modifying
Terminal Attributes using

system()

Punjab University College Of Information Technology (PUCIT)

password_simple.c, password_system.c

21

Instructor:Arif Butt

int tcgetattr(int fd, struct termios* info);
int tcsetattr(int fd,int when,struct termios* info)

● The tcgetattr() copies current settings from tty driver
associated to the open file fd into the struct pointed by info. Returns
0 on success and -1 on error

● The tcsetattr() sets the tty driver associated to the open file fd
with the settings given in the struct pointed by info. The when
argument tells when to update the driver settings. The when argument
can take following values:

● TCSANOW: update driver settings immediately

● TCSADRAIN: wait until all o/p already queued in the driver has
been transmitted to the terminal and then update the driver

● TCSAFLUSH: wait for o/p queue to be emptied + flush all queued
i/p data and then update the driver

Use tcgetattr() and tcsetattr() Library Calls

Punjab University College Of Information Technology (PUCIT)

22Punjab University College Of Information And Technology(PUCIT)

Structure termios
Instructor:Arif Butt

struct termios{
tcflag_t c_iflag; //contains flags related to input processing

tcflag_t c_oflag; //contains flags related to output processing

tcflag_t c_cflag;//contains flags related to control processing

tcflag_t c_lflag;//contains flags relating to local processing

. . .

. . .
};

The termio structure is defined in /usr/include/asm-generic/termios.h
file. Some important members of the termio structure that of our
interest right now are shown below:

23

Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

c_iflag

Individual Bits of termios Flags

I
G
N
B
R
K

-
-
-

I
U
T
F
8

I
M
A
X
B
E
L

I
X
O
F
F

I
X
A
N
Y

I
X
O
N

I
U
C
L
C

I
C
R
N
L

I
G
N
C
R

I
N
L
C
R

I
S
T
R
I
P

I
N
P
C
K

P
A
R
M
R
K

I
G
N
P
A
R

B
R
K
I
N
T

0123456789101112131415

c_oflag

O
P
O
S
T

-
-
-

-
-
-

F
F
D
L
Y

V
T
D
L
Y

B
S
D
L
Y

T
A
B
D
L
Y

C
R
D
L
Y

N
L
D
L
Y

O
F
D
E
L

O
F
I
L
L

O
N
L
R
E
T

O
N
O
C
R

O
C
R
N
L

O
N
L
C
R

O
L
C
U
C

0123456789101112131415

c_cflag

C
B
A
U
D

-
-
-

-
-
-

-
-
-

C
R
T
S
T
C
S

C
M
S
P
A
R

C
I
B
A
U
D

L
O
B
L
K

C
L
O
C
L

H
U
P
C
L

P
A
R
O
D
D

P
A
R
E
N
B

C
R
E
A
D

C
S
T
O
P
B

C
S
I
Z
E

C
B
A
U
D
E
X

0123456789101112131415

c_lflag

I
S
I
G

I
E
X
T
E
N

P
E
N
D
I
N

T
O
S
T
O
P

N
O
F
L
S
H

F
L
U
S
H
O

D
E
F
E
C
H
O

E
C
H
O
K
E

E
C
H
O
P
R
T

E
C
H
O
C
T
L

E
C
H
O
N
L

E
C
H
O
K

E
C
H
O
E

E
C
H
O

X
C
A
S
E

I
C
A
N
O
N

0123456789101112131415

24

Punjab University College Of Information Technology (PUCIT)

 Testing status of echo Flag
Instructor:Arif Butt

struct termios info;
tcgetattr(0, &info);
if((info.c_lflag & ECHO) == 0)

printf(“echo is off, since its bit is 0”);
else

printf(“echo is on, since its bit is 1”);

Code snippet to test the echo flag in the c_lflag member of
termios structure:

c_lflag x x x x x x x x x x x x x x x x
0123456789101112131415

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0123456789101112131415

ECHO
&

$ gcc echostate.c
$./a.out
$ stty -echo; ./a.out

$ gcc icanonstate.c
$./a.out
$ stty -icanon; ./a.out

25

Punjab University College Of Information Technology (PUCIT)

 Changing Attributes of Terminal Driver
Instructor:Arif Butt

Three steps to change the attributes of a terminal driver:
● Get the attributes from the driver
● Modify the attribute(s) you need to change
● Send these revised attributes back to the driver

26

Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

struct termios info;
tcgetattr(0, &info);

info.c_lflag = info.c_lflag | ECHO;
tcsetattr(0, TCSANOW, &info);

Code snippet to turn ON the echo flag in the c_lflag member of
termios structure:

c_lflag x x x x x x x x x x x x x x x x
0123456789101112131415

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0123456789101112131415

ECHO

 Making the echo Flag ON

|

27

Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

struct termios info;
tcgetattr(0, &info);

info.c_lflag = info.c_lflag & ~ECHO;
tcsetattr(0, TCSANOW, &info);

Code snippet to turn OFF the echo flag in the c_lflag member of
termios structure:

c_lflag x x x x x x x x x x x x x x x x
0123456789101112131415

1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1
0123456789101112131415

~ECHO

 Making the echo Flag OFF

&

28

Instructor:Arif Butt

Accessing & Modifying
Terminal Attributes using

tcgetattr() & tcsetattr()

Punjab University College Of Information Technology (PUCIT)

password_tcget.c

10/18/19 29Punjab University College Of Information And Technology(PUCIT)

Instructor:Arif Butt

● We have seen the use of fcntl() system call to get/set the attributes
of a disk file. To get/set the attributes of device files we can use the
ioctl() system call. Each type of device has its own set of
properties and ioctl operations

● The first argument fd specifies an open file descriptor that refers to a
device

● The second argument request specifies the control function to be
performed based upon the device being addressed. Defined
in /usr/include/asm-generic/ioctls.h

● Remaining optional arguments are request specific, defined
in/usr/include/x86_64-linux-gnu/bits/ioctl-
types.h

int ioctl(int fd, int request[,arg,...]);

ioctl() System call

30

Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

struct termios info;
ioctl(0,TCGETS, &info);

info.c_lflag = info.c_lflag | ECHO;
ioctl(0, TCSETS, &info);

 Changing echo Flag Bit Using ioctl()
Code snippet to turn ON the echo flag in the c_lflag member of
termios structure using ioclt():

Code snippet to turn OFF the echo flag in the c_lflag member of
termios structure using ioclt():
struct termios info;
ioctl(0,TCGETS, &info);

info.c_lflag = info.c_lflag & ~ECHO;
ioctl(0, TCSETS, &info);

31

Instructor:Arif Butt

Accessing & Modifying
Terminal Attributes using

ioctl()

Punjab University College Of Information Technology (PUCIT)

password_ioctl.c

32

Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

struct winsize wbuf;

ioctl(0, TIOCGWINSZ, &wbuf);

printf("%d rows x %d cols \n", wbuf.ws_row,wbuf.ws_col)

A video terminal screen, has size measured in rows and columns or
pixels. The following code snippet displays the dimensions of the screen
using ioctl() call (winsize_ioctl.c):

 Getting the Screen Size Using ioctl()

● Along with many other constants the second argument TIOCGWINSZ
is defined in /usr/include/asm-generic/ioctls.h

● The winsize structure is defined in/usr/include/x86_64-
linux-gnu/bits/ioctl-types.h

33Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

mystty.c
Try writing your own stty program, that mimic the
behavior of stty command as close as possible

34Punjab University College Of Information Technology (PUCIT)

Things To Do
Instructor:Arif Butt

I f y o u h a v e p r o b l e m s v i s i t m e i n c o u n s e l i n g h o u r s

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

