
1Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Lecture # 4.1
Process Management

Part - I

Course: Advanced Operating System

Instructor: Arif Butt

Punjab University College of Information Technology (PUCIT)
University of the Punjab

Source Code files available at: https://bitbucket.org/arifpucit/spvl-repo/src
Lecture Slides available at: http://arifbutt.me

2Punjab University College Of Information Technology (PUCIT)

Agenda
Instructor:Arif Butt

● Overview of Processes in Linux
● The task_struct Structure
● The /proc Directory
● Accessing Process Identifications
● Modifying Process Identifications
● Process Creation using fork()
● Process Trees
● Process Chains
● Process Fans

3

Instructor:Arif Butt

Processes vs Files

Punjab University College Of Information Technology (PUCIT)

November 2, 2019 4Punjab University College Of Information And Technology(PUCIT)

Instructor:Arif Butt

Punjab University College Of Information And Technology(PUCIT)

 Kernel Data Structures
Instructor:Arif Butt

Punjab University College Of Information And Technology(PUCIT)

Instructor:Arif Butt

Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

0xbfffffff
0xc0000000

etext

edata

end

0x00000000

0xffffffff Memory
invisible
to user code

Process Address Space

0x40000000

5Punjab University College Of Information Technology (PUCIT)

Process Control Block (task_struct)
Instructor:Arif Butt

A Process is an entity that can be assigned to and executed by a Processor

1. Process identification:
● PID & PPID
● UID & GID
● EUID & EGID
● Saved SUID& SGID
● File System UID & GID
● Supplementary GIDs

2. Process State Information:
● User Visible Registers
● Control and Status Registers (flags)

3.Process Control Information:
● Scheduling info
● Privileges info
● Memory management info
● Resource ownership and utilization
● IPC

6

Instructor:Arif Butt

Accessing
Process IDs

Punjab University College Of Information Technology (PUCIT)

7Punjab University College Of Information Technology (PUCIT)

Process ID & Parent Process ID
Instructor:Arif Butt

● Above calls returns PID and PPID of the current process. Never fails
● Each process has a Process ID (PID), a positive integer that uniquely

identifies a process on the system
● Linux kernel limits PIDs to being less than or equal to 32767. Once it

has reached 32767, the PID counter is reset to 300, rather than 1
● On Linux 2.4 & earlier, PID limit of 32767 is defined by kernel

constant PID_MAX
● On Linux 2.6, the default upper limit for PIDs remain 32767 & is

adjustable via /proc/sys/kernel/pid_max file
● On 32 bits platforms, the maximum value for this file is 32768 but on

64-bit platforms, it can be adjusted to any value up to 222(approx 4
million)

pid_t getpid();
pid_t getppid();

8Punjab University College Of Information Technology (PUCIT)

Process ID & Parent Process ID (cont...)
Instructor:Arif Butt

● On a shell you can get the PID of the shell in the environment variable
in $$ and the parent ID in environment variable PPID

● The parent of any process can be found by looking at the 4th field of
/proc/PID/stat file. Also see the 3nd field which shows the state
of the process (RSDZTX). (See man page of proc for details)

● The swapper or scheduler is a system process having a PID of 0. It
manages memory allocation for processes, swaps processes from run
state to Ready Queue or other and may be to disk. No program file for
swapper in /proc/ directory

● The init, now systemd is a user process having a PID of 1. It is
invoked by the kernel at the end of the booting process

● Page daemon now kthreadd is a system process having a PID of 2.
It support the paging of virtual memory system

9Punjab University College Of Information Technology (PUCIT)

Real User ID & Real Group ID
Instructor:Arif Butt

● The real user ID & real group ID identify the user and group to
which the process belongs. (Defines ownership of the process)

● As part of the login process, a login shell gets it real UID and
real GID from the 3rd & 4th field of the user's password record
in /etc/passwd file

● When a new process is created (when a shell exec a program),
it inherits these IDs from its parent

● Above two calls returns the real UID and real GID of the current
process. Never fails

uid_t getuid();
gid_t getgid();

10Punjab University College Of Information Technology (PUCIT)

Effective User ID & Effective Group ID
Instructor:Arif Butt

● On most Unix implementations, the effective IDs are used to
determine a process's permission when accessing resources such
as files, system V IPC objects, which themselves have
associated user and group IDs determining to which they belong

● Normally the effective IDs have the same values as the real IDs
but there are two ways using which the effective IDs can take
different values:

● By execution of programs having their SUID & SGID bit set

● Use of system calls (setuid(), setgid().....)

uid_t geteuid();
gid_t getegid();

11Punjab University College Of Information Technology (PUCIT)

Saved Set-User-ID and Saved Set-Group-ID
● These two IDs are designed for use with executable programs

having their SUID/SGID bit set
● When your shell executes a program with its SUID bit set then

the effective IDs of the process are made the same as the owner
of the executable. If the SUID bit of the program is not set, then
no change is made to the effective IDs of the process, i.e, they
remain the same as real IDs of the process. Finally (after both
cases) the EUID and EGID are copied to the saved SUID &
saved SGID respectively

● Example: Suppose a process whose real, effective & saved set-
user-ID are all 1000, execs a program with its SUID bit set &
owned by root. After the exec, the user IDS of the process will
be changed as follows:

 real=1000 effective=0 saved=0

Instructor:Arif Butt

12Punjab University College Of Information Technology (PUCIT)

Real Effective and Saved User IDs
Instructor:Arif Butt

● getresuid() & getresgid() returns the current values of
the calling process real, effective and saved user/group IDs in the
locations pointed by these arguments

● On success 0 is returned, on error -1 is returned and errno is set
appropriately

● Only error is EFAULT, i.e., one of the arguments specified an
address outside the calling process's address space

int getresuid(uid_t *ruid, uid_t*euid, uid_t*suid);

int getresgid(gid_t *rgid, gid_t*egid, gid_t*sgid);

13Punjab University College Of Information Technology (PUCIT)

Other IDs
File System User ID & File System Group ID

● On Linux it is the File-System user and group IDs rather than
Effective user & group IDs that are used to determine
permission when performing file system operations such as
opening file, changing file ownership, modifying file permission

Supplementary Group IDs

● The supplementary group IDs are a set of additional groups
(secondary defined in /etc/group) to which a process
belongs

● A login shell obtain these from the /etc/group file while a
new process inherit these IDs from its parent

Instructor:Arif Butt

14

Instructor:Arif Butt

Accessing PIDs
Proof of concepts
id1.c - id3.c

Punjab University College Of Information Technology (PUCIT)

15

Instructor:Arif Butt

Modifying
Process IDs

Punjab University College Of Information Technology (PUCIT)

16Punjab University College Of Information Technology (PUCIT)

Modifying Effective IDS
Instructor:Arif Butt

● Changes the effective IDs and possibly the real and the saved-set IDs of the
calling process to the value given by the argument. On success returns 0,
and -1 on error

● Following rules govern the changes that a process can make to its IDs using
setuid() and setgid()

● When an unprivileged process calls setuid() only the effective user
ID of the process is changed. Furthermore, it can be changed only to the
same values as either the real user ID or saved set user-ID

● When a privileged process calls setuid() with a non zero argument
then real, effective & saved set user ID are all set to the value specified
in the uid/gid argument. This is a one way trip, i.e. subsequently the
process cannot use setuid() to reset the identifiers back to 0

int setuid(uid_t uid);
int setgid(gid_t gid);

17Punjab University College Of Information Technology (PUCIT)

Modifying Effective IDS (cont...)
Instructor:Arif Butt

int seteuid(uid_t euid);
int setegid(gid_t egid);
● Changes the effective IDs to the value given by the argument

● Following rules govern the changes that a process can make to its effective
IDs using seteuid() and setegid()

● When an unprivileged process calls seteuid() only the effective
user ID of the process is changed. Furthermore, it can be changed only
to the same values as either the real user ID or saved set user-ID

● When a privileged process calls seteuid() with a non zero argument
then only effective ID is set to the value specified in the euid/egid
argument. However, this is NOT a one way trip, i.e. if a privileged
process uses seteuid() to change its effective user ID to a nonzero
value, it ceases to be privileged but later it can again use seteuid()
to change its effective ID to 0

18Punjab University College Of Information Technology (PUCIT)

Modifying Effective IDS (cont...)
Instructor:Arif Butt

int setreuid(uid_t ruid, uid_t euid);
int setregid(gid_t rgid, gid_t egid);
● Allows the calling process to independently change to values of its real and

effective user IDs. If you want to change only one of the identifiers, then
we can specify -1 for the other argument.

● Following rules govern the changes that a process can make to its IDs using
setreuid() and setregid()

● An unprivileged process can set the real user ID only to the current
value of the real or effective user ID. Effective user ID can be set only
to the current value of the real, effective or saved set user ID

● A privileged process can independently change real, and effective IDs
to any values. (Changing the effective ID implicitly changes the Saved
ID as well)

19Punjab University College Of Information Technology (PUCIT)

Modifying Real, Effective & saved set IDS
Instructor:Arif Butt

● Allows the calling process to independently change the values of all three
IDs. Specifying -1 leaves the corresponding ID unchanged

● Following rules govern the changes that a process can make to its IDs
using setresuid() and setresgid()

● An unprivileged process can set the real, effective & saved set user ID to
any of the values currently in its current real, effective or saved set user
IDs

● A privileged process can independently change its real, effective & saved
set user ID to any values

int setresuid(uid_t ruid, uid_t euid, uid_t suid);
int setresgid(gid_t rgid, gid_t egid, uid_t sgid);

20

Instructor:Arif Butt

Modifying PIDs
Proof of concepts
id4.c - id5.c

Punjab University College Of Information Technology (PUCIT)

21Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Process Creation

22Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

● The fork() system call allows one process, the parent, to create a new
process, the child

● It is a system call which is called once but return twice, once in the parent
and once in the child. To the parent process it returns PID of child process
and to the child process it returns zero. After the call returns both parent
and child processes continues their execution concurrently from the next
line of code

● The child process is a clone of the parent and obtains copies of the parent’s
stack, data, heap,and text segments

● PIDs are allocated sequentially to the new child processes, so effectively
unique (but do wrap up after a very long time)

● On success, the return value to the child process is 0 and the return value to
the parent process is PID of the child

● On failure, a -1 will be returned in the parent context, no child process
created, and errno will be set appropriately

pid_t fork();

Process Creation using fork()

23Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Three main reasons of failure:
● EAGAIN: A system-imposed limit on the number of processes was

encountered. There are number of factors that can trigger this, e.g.,
● Number of processes under one user has reached
● Kernel limit on total number of processes has reached

● ENOMEM: Failed to allocate the necessary kernel structures because
memory is tight

● ERESTARTNOINTR: System call interrupted by a signal and will be
restarted

Why fork() is called once but return twice?
● Return value to the child process is 0, because 0 is the ID of swapper

process only and a child process can always call getppid() to obtain its
parent's ID

● Return value to the parent process is PID of child, because a process
can have more than one child and there is no function that allows a process
to obtain PIDs of its children

Process Creation using fork() (...)

24Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Process Creation using fork() (...)

25Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Process Creation using fork() (...)

26Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Process Creation using fork() (...)

27Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

● After the fork() system call parent and child are identical except for the
return value of fork (and of course their PIDs)

● They are free to execute on their own from now onwards, i.e., after a
successful or unsuccessful fork() system call both will start their
execution from line#6

Process Creation using fork() (...)

28Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

● When both will execute line#11, parent will now execute line#12, while
child will execute line#14

Process Creation using fork() (...)

29Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

● When a process wants to duplicate itself, so that parent & child each can
execute different sections of code concurrently. Example: Consider a
network server; parent waits for a service request from a client. When
the request arrives, parent calls fork & let the child handle the request.
Parent goes back to listen for the next request

● When a process wants to execute a different program. This is common
for command shells where the child does an exec() right after it
returns from the fork

Two main uses of fork()

30Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

● After a fork() it is indeterminate which process – the parent or child
will execute. On a multiprocessor system they may both get
simultaneous access to the CPU. In most of the cases, the parent will
execute first. The two options are:

➔ Parent first after fork()

➔ Child first after fork()

● In Linux 2.6.32, since parent's state is already active in the CPU and its
memory management information is already cached in the h/w TLB,
therefore, running the parent first should result in better performance

Race Condition after a fork()

31Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

● Real, effective and saved UIDs / GIDs

● Open file descriptors (PPFDT)

● Environment variables (exported only)

● Present working directory

● Nice value

● File mode creation mask (umask)

● Signal mask and signal disposition

● Attached shared memory segments

Note: Since the child and parent processes have copies of the same PPFDT, so any read/write
operations on the files that the parent process has opened before creating the child process will be visible
to both processes, because the entry in the SWFT is shared for those files

Attributes Inherited after fork()

32Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

● Child has different PID and PPID

● Return value from fork

● Child't times for CPU usage are reset to 0

● File locks held by the parent (using fcntl()) are not inherited
by the child

● Set of pending Alarms in the parent are cleared in the child

● Set of pending Signals in the parent are cleared in the child

Difference Between Parent & Child After fork()

33Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Process Creation
Proof of concept
fork1.c to fork9.c

forkfile.c

34

Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Process Tree, Chain, Fan

35

Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Parent (9823)

Child (9825)

Child (9826)

A sample o/p of code is:

Example: Process Tree
Parent forks once and then child call next fork and so on

arif@kali:~$ echo $$
4920
arif@kali:~$./a.out 2
PID=9823, PPID=4920
PID=9825, PPID=9823
PID=9824, PPID=9823
PID=9826, PPID=9824

Child (9824)

mailto:arif@kali
mailto:arif@kali

36

Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Parent (9653)

Child (9654)

Child (9655)

Child (9656)

A sample o/p of code is:

Example: Process Chain
Parent forks once and then child call next fork and so on

arif@kali:~$ echo $$
4920
arif@kali:~$./a.out 3
PID=9653, PPID=4920
PID=9654, PPID=9653
PID=9655, PPID=9654
PID=9656, PPID=9655

mailto:arif@kali
mailto:arif@kali

37

Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Parent (9784)

Child (9785) Child (9786) Child (9787)

Example: Process Fan
Parent is responsible for every fork. Child processes will break, while
parent process will iterate again to create another child process. Used for
simultaneous execution

arif@kali:~$ echo $$
4920
arif@kali:~$./a.out 3
PID=9784, PPID=4920
PID=9787, PPID=9784
PID=9786, PPID=9784
PID=9785, PPID=9784

mailto:arif@kali
mailto:arif@kali

38Punjab University College Of Information Technology (PUCIT)

Things To Do
Instructor:Arif Butt

I f y o u h a v e p r o b l e m s v i s i t m e i n c o u n s e l i n g h o u r s

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

