
1Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Lecture # 4.2
Process Management

Part - II

Course: Advanced Operating System

Instructor: Arif Butt

Punjab University College of Information Technology (PUCIT)
University of the Punjab

Source Code files available at: https://bitbucket.org/arifpucit/spvl-repo/src
Lecture Slides available at: http://arifbutt.me

2Punjab University College Of Information Technology (PUCIT)

Agenda
Instructor:Arif Butt

● Process Creation using vfork()
● Copy-on-Write semantics
● Orphan processes
● Zombie processes
● Monitoring child processes using wait()
● Deciphering status argument of wait

● Using bit-wise operators
● Using macros

● Limitations of wait() system call
● Monitoring child processes using waitpid()
● Monitoring child processes using wait3()
● Monitoring child processes using wait4()

3Punjab University College Of Information Technology (PUCIT)

Process Creation using vfork()
Instructor:Arif Butt

● In bad old days a fork() would require making a complete copy of the
parent data space. This was an overhead because, since immediately after
a fork the child calls exec() most of the times. So for greater efficiency
BSD introduced vfork() system call. Also supported by POSIX.1

● vfork() is intended to create a new process when the purpose of the
new process is to exec a new program, and it do so without fully
copying the parent address space into the child

● Features that make vfork()more efficient than fork()are:
✔ No duplication of virtual memory pages is done for child process.

Child shares the parent's address space until it either performs exec()
or call exit()

✔ Execution of parent process is suspended until the child has performed
an exec() or an exit()

pid_t vfork();

4Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Process Creation using vfork()
Proof of concept

vfork1.c & vfork2.c

5Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

● Today most OSs implement fork() using copy-on-write pages so the only penalty incurred
by fork() is the time & memory required:

● To duplicate the parent's page table
● To create a unique task structure for the child

● Parent forks a child process. Child gets a copy of the parent’s page table. Pages which may
change are marked “copy-on-write” ; i.e. the pages are not copied for the child rather the child
starts sharing the pages and the writable pages are marked “copy-on-write”

● What happens when the child reads the page. Just accesses same memory as parent

Copy-On-Write Semantics

6Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

What happens when the child/parent writes the page?
● If either process (child/parent) tries to modify a shared page, a page fault

occurs and the page is copied and inserted in the page table for that
particular process

● The other process (who later faults on write) discovers it is the only owner;
so no copying takes place

Copy-On-Write Semantics

7Punjab University College Of Information Technology (PUCIT)

Copy-On-Write Semantics
Instructor:Arif Butt

Page table before and after modification of a shared copy-on-write page

SUSv3 marks vfork() as obsolete, and has removed the specification of vfork()

8

Punjab University College Of Information Technology (PUCIT)

Orphan Processes
Instructor:Arif Butt

● If a parent has terminated before reaping its child, and the
child process is still running, then that child is called
orphan

● In UNIX all orphan processes are adopted by init or
systemd which do the reaping

● Let us see this concept on a Linux terminal

9

Punjab University College Of Information Technology (PUCIT)

Zombie Processes
Instructor:Arif Butt

● Processes which have terminated but their parent(s) have not
collected their exit status and has not reaped them are called
zombies or defunct. So a parent must reap its children

● When a process terminates but still is holding system resources
like PCB and various tables maintained by OS. It is half-alive &
half-dead because it is holding resources like memory but it is
never scheduled on the CPU

● Zombies can't be killed by a signal, not even with the silver bullet
(SIGKILL). The only way to remove them from the system is to
kill their parent, at which time they become orphan and adopted
by init or systemd

10Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Monitoring Child Process

11Punjab University College Of Information Technology (PUCIT)

wait() System call
Instructor:Arif Butt

pid_t wait(int *status)
● The process that calls the wait() system call gets blocked till any

one of its child terminates
● The child process returns its termination status using the exit() call

and that integer value is received by the parent inside the status
argument (used for reaping and cleaning zombies from system). On
the shell, we can check this value in the $? environment variable

● On success, the wait() system call returns PID of the terminated
child and in case of error returns a -1

● If a process wants to wait for termination of all its children, then
while(wait(null) > 0);

Two purposes of wait() system call:
● Notify parent that a child process finished running
● Tell the parent how a child process finished

12Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Monitoring Child Processes
Proof of concept

wait1.c

13Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

● Normal Termination: On successful completion of the task,
programs call exit(0) or return 0 from main() function.
In case of failure, programs call exit() with a non-zero value.
The programmer need to document these error values in the
manual page

● Killed by a Signal: A process might get killed by a signal
generated from the keyboard, form an interval timer, the kernel,
or from another process

● Stopped by a Signal: A process might get SIGSTOP(19)or
SIGTSTP(20) signal and temporary suspend its execution

● Continued by a Signal: A process might get SIGCHILD(17)
or SIGCONT(18) signal and continue its execution

A Process can Terminate in 4 Ways

14Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

All this information is encoded in the status argument of the wait()
system call. A programmer can decipher this information using bit
operators or using available macros

15 7 08

wait() Status Argument

exit status (0-255)

 0

Normal termination

Killed by a signal

Stopped by a signal
<19, 20>

Continued by a signal
<17, 18>

7

7

15Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Monitoring Child Processes
Proof of concept

Retrieving the exit status on normal termination
wait2.c

16Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Overview of Signals
On the Shell

Review OS with Linux Video Lec 10 Signal Handling

17Punjab University College Of Information Technology (PUCIT)

Overview of Signals
● Suppose a program is running in a while(1) loop and you press
Ctrl+C key. The program dies. How does this happens?

● User presses Ctrl+C

● The tty driver receives character, which matches intr

● The tty driver calls signal system

● The signal system sends SIGINT(2) to the process

● Process receives SIGINT(2)
● Process dies

● Actually by pressing <ctrl+c>, you ask the kernel to send SIGINT
to the currently running foreground process. To change the key
combination you can use stty(1) or tcsetattr(2) to replace
the current intr control character with some other key combination

Instructor:Arif Butt

18Punjab University College Of Information Technology (PUCIT)

● Signal is a software interrupt delivered to a process by OS because:
● The process did something (SIGFPE (8), SIGSEGV (11), SIGILL (4))
● The user did something (SIGINT (2), SIGQUIT (3), SIGTSTP (20))
● One process wants to tell another process something (SIGCHILD (17))

● Signals are usually used by OS to notify processes that some event
has occurred, without these processes needing to poll for the event

● Whenever a process receives a signal, it is interrupted from whatever it
is doing and forced to execute a piece of code called signal handler.
When the signal handler function returns, the process continues
execution as if this interruption has never occurred

● A signal handler is a function that gets called when a process receives
a signal. Every signal may have a specific handler associated with it. A
signal handler is called in asynchronous mode. Failing to handle
various signals, would likely cause our application to terminate, when it
receives such signals

Instructor:Arif Butt

Overview of Signals (cont...)

19Punjab University College Of Information Technology (PUCIT)

Synchronous & Asynchronous Signals
● Signals may be generated synchronously or asynchronously
● Synchronous signals pertains to a specific action in the program

and is delivered (unless blocked) during that action. Examples:
● Most errors generate signals synchronously
● Explicit request by a process to generate a signal for the same

process
● Asynchronous signals are generated by the events outside the

control of the process that receives them. These signals arrive at
unpredictable times during execution. Examples include:

● External events generate requests asynchronously
● Explicit request by a process to generate a signal for some

other process

Instructor:Arif Butt

20Punjab University College Of Information Technology (PUCIT)

Signal Delivery and Handler Execution
Instructor:Arif Butt

Start of program

Program Code

Instruction n

Instruction n+1

F
lo

w
 of e

xecu
tion

Signal Handler

Code of signal
handler is
executed

1

2

4

3

return

Program resumes at point of interruption

Kernel calls S.H on behalf of process

exit()

Signal delivery

5

21Punjab University College Of Information Technology (PUCIT)

● Every signal has a symbolic name and an integer value associated with
it, defined in /usr/include/asm-generic/signal.h

● You can use following shell command to list down the signals on your
system:

$ kill -l
● Linux supports 32 real time signals from SIGRTMIN (32) to

SIGRTMAX (63). Unlike standard signals, real time signals have no
predefined meanings, are used for application defined purposes. The
default action for an un-handled real time signal is to terminate the
receiving process. See also $ man 7 signal

Instructor:Arif Butt

Signal Numbers and Strings

22Punjab University College Of Information Technology (PUCIT)

Sending Signals to Processes
A signal can be issued in one of the following ways:

● Using Key board

● <Ctrl+c> gives SIGINT(2)

● <Ctrl+\> gives SIGQUIT(3)

● <Ctrl+z> gives SIGTSTP(20)

● Using Shell command

● kill -<signal> <PID> OR kill -<signal> %<jobID>

● If no signal name or number is specified then default is to send
SIGTERM(15) to the process

● Do visit man pages for jobs, ps, bg and fg commands

● bg gives SIGTSTP(20) while fg gives SIGCONT(18)

● Using kill() or raise() system call

● Implicitly by a program (division by zero, issuing an invalid addr, termination of a child process)

Instructor:Arif Butt

23Punjab University College Of Information Technology (PUCIT)

Signal Disposition
Upon delivery of a signal, a process carries out one of the following
default actions, depending on the signal: [$man 7 signal]

1. The signal is ignored; that is, it is discarded by the kernel and has no
effect on the process. (The process never even knows that it occurred)

2. The process is terminated (killed). This is sometimes referred to as
abnormal process termination, as opposed to the normal process
termination that occurs when a process terminates using exit()

3. A core dump file is generated, and the process is terminated. A core
dump file contains an image of the virtual memory of the process,
which can be loaded into a debugger in order to inspect the state of the
process at the time that it terminated

4. The process is stopped—execution of the process is suspended
(SIGSTOP, SIGTSTP)

5. Execution of the process is resumed which was previously stopped
(SIGCONT, SIGCHLD)

Instructor:Arif Butt

24Punjab University College Of Information Technology (PUCIT)

Signal Disposition (cont...)
● Each signal has a current disposition which determines how the

process behave when the OS delivers it the signal

● If you install no signal handler, the run time environment sets up a set
of default signal handlers for your program. Different default actions
for signals are:

Instructor:Arif Butt

TERM Abnormal termination of the program with _exit() i.e, no
clean up. However, status is made available to wait() &
waitpid() which indicates abnormal termination by the
specified signal

CORE Abnormal termination with additional implementation
dependent actions, such as creation of core file may occur

STOP Suspend/stop the execution of the process
CONT Default action is to continue the process if it is currently stopped

25Punjab University College Of Information And Technology(PUCIT)

Important Signals
Instructor:Arif Butt

SIGHUP(1) Informs the process when the user who run the process logs out. When a
terminal disconnect (hangup) occurs, this signal is sent to the controlling
process of the terminal. A second use of SIGHUP is with daemons. Many
daemons are designed to respond to the receipt of SIGHUP by
reinitializing themselves and rereading their configuration files.

SIGINT(2) When the user types the terminal interrupt character (usually <Control+C>,
the terminal driver sends this signal to the foreground process group. The
default action for this signal is to terminate the process.

SIGKILL(9) This is the sure kill signal. It can’t be blocked, ignored, or caught by a
handler, and thus always terminates a process.

SIGPIPE(13) This signal is generated when a process tries to write to a pipe, a FIFO, or a
socket for which there is no corresponding reader process. This normally
occurs because the reading process has closed its file descriptor for the IPC
channel

SIGALRM(14) The kernel generates this signal upon the expiration of a real-time timer set
by a call to alarm() or setitimer()

SIGTERM(15) Used for terminating a process and is the default signal sent by the kill
command. Users sometimes explicitly send the SIGKILL signal to a
process, however, this is generally a mistake. A well-designed application
will have a handler for SIGTERM that causes the application to exit
gracefully, cleaning up temporary files and releasing other resources
beforehand. Killing a process with SIGKILL bypasses SIGTERM handler.

(Default Behavior: Term)

26Punjab University College Of Information Technology (PUCIT)

Important Signals
Instructor:Arif Butt

SIGQUIT(3) When the user types the quit character (Control+\) on the keyboard, this
signal is sent to the foreground process group. Using SIGQUIT in this
manner is useful with a program that is stuck in an infinite loop or is
otherwise not responding. By typing Control-\ and then loading the
resulting core dump with the gdb debugger and using the backtrace
command to obtain a stack trace, we can find out which part of the program
code was executing

SIGILL(4) This signal is sent to a process if it tries to execute an illegal (i.e.,
incorrectly formed) machine-language instruction module

SIGFPE(9) Generate by floating point Arithmetic Exception

SIGSEGV(11) Generated when a program makes an invalid memory reference. A
memory reference may be invalid because the referenced page
doesn’t exist (e.g., it lies in an unmapped area somewhere between
the heap and the stack), the process tried to update a location in read-
only memory (e.g., the program text segment or a region of mapped
memory marked read-only), or the process tried to access a part of
kernel memory while running in user mode. In C, these events often
result from dereferencing a pointer containing a bad address. The
name of this signal derives from the term segmentation violation

(Default Behavior: Core)

27Punjab University College Of Information Technology (PUCIT)

Important Signals (cont...)
Instructor:Arif Butt

SIGSTOP(19) This is the sure stop signal. It can’t be blocked, ignored, or
caught by a handler; thus, it always stops a process

SIGTSTP(20) This is the job-control stop signal, sent to stop the foreground
process group when the user types the suspend character
(usually <Control+Z>) on the keyboard.. The name of this
signal derives from “terminal stop”

Default Behavior: Stop

Default Behavior: Cont
SIGCHILD(17) This signal is sent (by the kernel) to a parent process when

one of its children terminates (either by calling exit() or as
a result of being killed by a signal). It may also be sent to a
process when one of its children is stopped or resumed by a
signal

SIGCONT(18) When sent to a stopped process, this signal causes the process
to resume (i.e., to be rescheduled to run at some later time).
When received by a process that is not currently stopped, this
signal is ignored by default. A process may catch this signal,
so that it carries out some action when it resumes

28Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Back to
Monitoring Child Processes

using wait() System Call

29Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

All this information is encoded in the status argument of the wait()
system call. A programmer can decipher this information using bit
operators or using available macros

15 7 08

wait() Status Argument

exit status (0-255)

 0

Normal termination

Killed by a signal

Stopped by a signal
<19, 20>

Continued by a signal
<17, 18>

7

7

30Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Monitoring Child Processes
Proof of concept

Retrieving the termination signal when killed by a signal
(using bit operators)

wait3.c

31Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

WIFEXITED (status) ● This macro returns true if child process exited normally
● WEXITSTATUS (status) returns exit status of the

child process
WIFSIGNALED (status) ● This macro returns true if child process is killed by a

signal
● WTERMSIG(status) returns the number of signal

that killed the process
● WCOREDUMP(status) returns a non-zero value if the

child process created a core dump file
WIFSTOPPED (status) ● This macro returns true if child process is stopped by a

signal
● WSTOPSIG(status) returns the number of signal

that stopped the process
WIFCONTINUED (status) ● This macro returns true if child process was resumed by

SIGCONT

Macros for wait() Status Argument
Instead of bit operators, we can use macros to decipher the status argument of
wait() , defined in /usr/include/x86_64-linux-gnu/bits/waitstatus.h

32Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Monitoring Child Processes
Proof of concept

Retrieving the termination signal when killed by a signal
(using macros)
wait4.c

33Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

● Using wait(), it is not possible for parent to retrieve the signal
number using which the execution of a child process is stopped
(SIGSTOP(19),SIGTSTP(20)). Moreover, it is also not
possible to be notified when a stopped child is resumed by
delivery of a (SIGCHILD(17), SIGCONT(18)) signal

● It is not possible to wait for a particular child, parent can only
wait for the first child that terminates

● It is not possible to perform a non blocking wait so that if no child
has yet terminated, parent get an indication of this fact

Limitations of wait() System call

34Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Monitoring Child Processes
Proof of concept

Limitation of wait() System Call
wait5.c

35Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

With the passage of time, UNIX designers have added a number of variants of
the wait() system call, like waitpid(), waitid(), wait3(),
wait4()...

The pid argument enables the selection of the child to be waited for:

● If pid > 0 : waits for the child whose PID equals the value of pid

● If pid == -1: waits for any child

wait(&status) <=> waitpid(-1, &status, 0)

● If pid == 0 : waits for any child process whose process Group ID is the same
as the calling/parent process

● If pid < -1: waits for any child process whose process Group ID equals the
absolute value of pid argument

pid_t waitpid(pid_t pid, int* status,int options);

waitpid() System call

36Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

The third argument of waitpid() call is a bit mask of zero or more of
the following flags, defined in /usr/include/wait.h file:

WUNTRACED Also returns information when a child is stopped by a
signal

WCONTINUED Also return information about stopped children that have
been resumed by delivery of SIGCONT signal

WNOHANG Performs polling. If no child specif ied by pid has yet
changed state, then return immediately, instead of
blocking

waitpid() System call
pid_t waitpid(pid_t pid, int* status,int options);

37Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Monitoring Child Processes
Proof of concept

Retrieving the stop signal when stopped by a signal
waitpid.c

38Punjab University College Of Information Technology (PUCIT)

wait3()& wait4() system calls
Instructor:Arif Butt

pid_t wait3(int *status , int options , struct rusage *rusage);
pid_t wait4(pid_t pid,int* status,int options,struct rusage *rusage);

● wait3() & wait4() system calls are similar to waitpid()but also
returns resource usage information about the terminated child in the
structure pointed to by rusage arguments,which contains information like
amount of CPU time used by the process, memory management statistics.

● Waiting for any of the children:

wait3(&status,options,null) <=> waitpid (-1,&status,options);

● Waiting for a particular child with id pid:

wait4(pid,&status,options,null)<=>waitpid(pid,&status,options);

39Punjab University College Of Information Technology (PUCIT)

Things To Do
Instructor:Arif Butt

I f y o u h a v e p r o b l e m s v i s i t m e i n c o u n s e l i n g h o u r s

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

