
1Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Lecture # 4.5
Linux Process Scheduler

O(1) / CFS

Course: Advanced Operating System

Instructor: Arif Butt

Punjab University College of Information Technology (PUCIT)
University of the Punjab

Source Code files available at: https://bitbucket.org/arifpucit/spvl-repo/src
Lecture Slides available at: http://arifbutt.me

2Punjab University College Of Information Technology (PUCIT)

Agenda
Instructor:Arif Butt

● Overview of CPU Scheduling

● UNIX SVR3 CPU Scheduler

● Linux O(1) CPU Scheduler

● Linux CFS CPU Scheduler

● Linux schedtool

● Scheduling related system calls

3Punjab University College Of Information Technology (PUCIT)

CPU Scheduler
Instructor:Arif Butt

● Scheduling is a matter of managing queues to minimize queueing
delay and to optimize performance in a queueing environment

● The process scheduler in a multitasking operating system is a
kernel component that decides which process runs, when and for
how long

A multitasking OS comes in two flavors:
● In Preemptive multitasking, the scheduler decides when a

process is to cease running (e.g., time slice expires) and a new
process is to begin running. On many modern OSs, the time slice
is dynamically calculated as a fraction of process behavior and
configurable system policy

● In Cooperative multitasking, a process does not stop running
until it voluntary decides to do so. (e.g., Mac OS 9 and earlier,
Windows 3.1 and earlier)

4Punjab University College Of Information Technology (PUCIT)

Preemptive vs Non-Preemptive Kernels
Instructor:Arif Butt

At any instant of time a system can either be executing in user mode
(executing LOCs written by programmer) or kernel mode (executing LOCs written by the kernel

developer). A process can be inn kernel mode in

A) process context (a system call made by programmer)

B) interrupt context

The three types of OS kernel are:
● Preemptive Kernel, a kernel that can be preempted both in A and B
● Reentrant Kernel, a kernel that can be preempted in A only
● Nonpreemptive Kernel, a kernel cannot be preempted

5Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

● When speaking about process scheduling, processes are traditionally
classified into three different classes:

● Interactive Processes: These interact constantly with their users.
When input is received, the average delay must fall between 50-150
ms, otherwise the user will find the system to be unresponsive.
Typical interactive programs are command shells, text editors and
graphical applications

● Batch Processes: These do not need user interaction and often
execute in the back ground and are often penalized by the
scheduler. Typical batch programs are programming language
compilers, database search engines and scientific computations

● Real-time Processes: These processes should have a short
guaranteed response time with a minimum variance. Typical real-
time programs are multimedia applications, robot controllers, and
programs that collect data from physical sensors

Types of Processes

6Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

● I/O-bound processes spend much of their time submitting and waiting
on I/O requests, e.g., waiting on user interactions via the keyboard and
mouse (Text editors)

● Processor-bound processes spend much of their time executing code.
The ultimate example is a process executing an infinite loop, or a video
encoder

● These two classifications are not mutually exclusive, as processes can
exhibit both behaviors simultaneously, e.g., a word processor doing
spell checking or macro calculations

Types of Processes (cont...)

7Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

● Maximize CPU utilization

● Maximize throughput

● Maximize fairness

● Minimize waiting time

● Minimize response time

● Minimize turn around time

Optimization Criteria for Process Scheduler

8Punjab University College Of Information Technology (PUCIT)

Recap of Process Scheduling Algorithms
Instructor:Arif Butt

9Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Traditional UNIX SVR3 Scheduler

10Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Traditional UNIX Scheduler (cont...)

11Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Limitations

● With large number of processes, overhead of re-computing process
priorities every second is very high

● Since the kernel itself is non-preemptive, high priority processes may
have to wait for low priority processes executing in kernel mode

Traditional UNIX Scheduler (cont...)

12Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Linux O(1) Scheduler

13Punjab University College Of Information Technology (PUCIT)

Linux O(1) Scheduler
Instructor:Arif Butt

14Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Linux O(1) Scheduler (cont...)

15Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Linux O(1) Scheduler (cont...)

16Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Limitations of O(1) Scheduler
● It uses complex heuristics to determine if a process is I/O bound

or CPU bound to benefit one over the other
● Lot of code to manage priority queues, at least 140 per processor

Linux Kernel Scheduler (cont...)

17Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Linux CFS Scheduler
Completely Fair Share Scheduler

18Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Scheduling Classes and Scheduling Policies

Stop Deadline Real Time CFS Idle

Highest priority Lowest priority

SCHED_DEADLINE SCHED_FIFO
SCHED_RR

SCHED_NORMAL
SCHED_BATCH
SCHED_ISO
SCHED_IDLEPRIO

NULL

19Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Linux CFS Scheduling Class

20Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Linux CFS Scheduling Class
Context Switch and Time Slice

21Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Linux CFS Scheduling Class
vruntime of a new process

22Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Linux CFS Scheduling Class
What about priorities within a class?

23Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Linux CFS Scheduling Class
How CFS handles CPU bound and I/O bound processes?

24Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

The Linux schedtool Utility

25Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

System calls related to Scheduling

26Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

System Calls related to Scheduling
int nice()

int getpriority()

int setpriority()

int sched_get_priority_min()

int sched_get_priority_max()

int sched_getscheduler()

int sched_setscheduler()

int sched_getparam()

int sched_setparam()

int sched_yield()

int sched_rr_get_interval()

int sched_getcpu()

int sched_getaffinity()

int sched_setaffinity()

27Punjab University College Of Information Technology (PUCIT)

Retrieving and Modifying nice Value
Instructor:Arif Butt

● This call changes the base priority of the calling process by adding the
inc to the nice value of the calling process. Only a superuser may
specify a negative argument

● On success, the new nice value is returned and on error -1 is returned
and errno is set appropriately

● Since nice() may legitimately return a value of -1 on successful call,
we must test for error by setting errno to 0 prior to the call, and then
checking for a -1 return status and a nonzero errno value after the call

● In case of a negative increment, the function invokes the capable()
function to verify whether the process has a CAP_SYS_NICE
capability

● The nice() system call affects only the process that invokes it. It is
maintained for backward compatibility only; it has been replaced by
the setpriority() system call

int nice(int inc);

28Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

● The getpriority() and setpriority() system calls
allow a process to get and set its own nice value or that of another
process

● Both system calls take the argument which and who, identifying
the process(es) whose priority is to be retrieved or modified. The
which argument determines how who is interpreted. The which
argument takes on of following values:

● PIRO_PROCESS: Operates on the process whose PID equals who. If
who is 0, use the caller's PID

● PRIO_GRP: Operate on all of the members of the process group whose
PGID equals who. If who is 0, use the caller's process group

● PRIO_USER: Operate on all processes whose RUID equals who. If who
is 0, use the caller's RUID

int getpriority(int which,int who);
int setpriority(int which,int who,int prio);

Retrieving and Modifying nice Value (cont...)

29Punjab University College Of Information Technology (PUCIT)

Getting Priority Ranges
Instructor:Arif Butt

● Above two calls return the maximum/minimum priority value that can
be used with the scheduling algorithm identified by policy

● Processes with numerically higher priority values are scheduled before
processes with numerically lower priority values

● Linux allows the static priority value range 1 to 99 for SCHED_FIFO
and SCHED_RR and the priority 0 for SCHED_OTHER and
SCHED_BATCH

● Scheduling priority ranges for the various policies are not alterable

int sched_get_priority_max(int policy);
int sched_get_priority_min(int policy);

30Punjab University College Of Information Technology (PUCIT)

Getting Scheduling Policy/Relinquishing CPU
Instructor:Arif Butt

● The sched_getscheduler() queries the scheduling policy currently
applied to the process/thread identified by pid. If pid equals 0, the policy
of the calling thread will be retrieved. On success, returns the policy
number, 0 for SCHED_NORMAL, 1 for SCHED_FIFO and so on

int sched_getscheduler(pid_t pid);

int sched_yield();

● A process may voluntarily relinquish the CPU in two ways: by
invoking a blocking system call or by calling sched_yield()

● If there are any other queued runnable processes at the same priority
level, then the calling process is placed at the back of the queue, and
the process at the head of the queue is scheduled

● If no other runnable processes are queued at this priority, then
sched_yield() does nothing, the calling process simply continues
using the CPU

31Punjab University College Of Information Technology (PUCIT)

Things To Do
Instructor:Arif Butt

I f y o u h a v e p r o b l e m s v i s i t m e i n c o u n s e l i n g h o u r s

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

