
1Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Lecture # 5.1
Overview of UNIX IPC

&
Design and Code of Signal Handlers

Course: Advance Operating System

Instructor: Arif Butt

Punjab University College of Information Technology (PUCIT)
University of the Punjab

Source Code files available at: https://bitbucket.org/arifpucit/spvl-repo/src
Lecture Slides available at: http://arifbutt.me

2Punjab University College Of Information Technology (PUCIT)

Today's Agenda
Instructor:Arif Butt

● Ways to Share Information Among UNIX Processes

● Taxonomy of InterProcess Communication

● Communication

● Synchronization

● Signals

● Persistence of IPC Objects

● Overview of Signals Concepts

● Signal Handling on BASH Shell

● Important Signals and their disposition

● Ignoring signals and writing signal handlers (on the shell)

3Punjab University College Of Information Technology (PUCIT)

Today's Agenda
Instructor:Arif Butt

● Sending signals using kill(), raise(), alarm(),
abort(), pause()

● Ignoring and writing our own Signal Handlers using signal()

● Introduction to Signal Sets and their related system calls

● Masking signals using sigprocmask()

● Limitations of signal() call

● Ignoring and writing Signal Handlers using sigaction()

4Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Introduction to UNIX IPC

5Punjab University College Of Information Technology (PUCIT)

Application Design
Option 1
One huge monolithic program that does every thing

Option 2
Multi_threaded programs

Option 3
Multiple programs using fork() that communicate with each
other using some form of Inter Process Communication (IPC)

Instructor:Arif Butt

6Punjab University College Of Information Technology (PUCIT)

Ways to Share Information b/w UNIX Processes
Instructor:Arif Butt

Process Process Process Process Process Process

Disk

Shared
memory

Kernel Buffer

Processes can access shared
memory without involvement
of kernel at all

User
area

Kernel
area

7Punjab University College Of Information Technology (PUCIT)

Taxonomy of IPC
Instructor:Arif Butt

Categories of IPC

Communication SignalsSynchronization

8Punjab University College Of Information Technology (PUCIT)

Taxonomy of IPC
Instructor:Arif Butt

Communication

Data Transfer Shared Memory

Byte Stream Message Passing

Pipes

FIFOS

Stream Sockets

SysV MQ

POSIX MQ

Datagram Sockets

SysV SM

POSIX SM

Memory Mappings

Anonymous Mapping

Memory Mapped Files

9Punjab University College Of Information Technology (PUCIT)

Taxonomy of IPC (cont...)
Instructor:Arif Butt

Synchronization

Semaphores File Locks

SysV Semaphores

POSIX Semaphores

File Locks

Record Locks

Named

Unnamed

For Threads

Mutex

Condition Variables

10Punjab University College Of Information Technology (PUCIT)

Taxonomy of IPC (cont...)
Instructor:Arif Butt

Signals

Standard Signals Real Time Signals

11Punjab University College Of Information Technology (PUCIT)

Persistence of IPC objects
Instructor:Arif Butt

Process
Persistence

Kernel
Persistence

File system
Persistence

● Exists as long as it is held open by a process
● Pipes and FIFOs
● TCP, UDP sockets
● Mutex, condition variables, read write locks
● POSIX memory based semaphores

● Exists until kernel reboots or IPC objects is explicitly
deleted

● Message Queues, semaphores & shared memory are at
least kernel persistent

● Exists until IPC objects is explicitly deleted, or file
system crashes

● Message queues, semaphores & shared memory can be
file system persistent if implemented using mapped
files

12Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Overview of Signals

13Punjab University College Of Information Technology (PUCIT)

Introduction to Signals
● Suppose a program is running in a while(1) loop and you press
Ctrl+C key. The program dies. How does this happens?

● User presses Ctrl+C

● The tty driver receives character, which matches intr

● The tty driver calls signal system

● The signal system sends SIGINT(2) to the process

● Process receives SIGINT(2)
● Process dies

● Actually by pressing <ctrl+c>, you ask the kernel to send SIGINT
to the currently running foreground process. To change the key
combination you can use stty(1) or tcsetattr(2) to replace
the current intr control character with some other key combination

Instructor:Arif Butt

14Punjab University College Of Information Technology (PUCIT)

● Signal is a software interrupt delivered to a process by OS because:
● The process did something (SIGFPE (8), SIGSEGV (11), SIGILL (4))
● The user did something (SIGINT (2), SIGQUIT (3), SIGTSTP (20))
● One process wants to tell another process something (SIGCHILD (17))

● Signals are usually used by OS to notify processes that some event
has occurred, without these processes needing to poll for the event

● Whenever a process receives a signal, it is interrupted from whatever it
is doing and forced to execute a piece of code called signal handler.
When the signal handler function returns, the process continues
execution as if this interruption has never occurred

● A signal handler is a function that gets called when a process receives
a signal. Every signal may have a specific handler associated with it. A
signal handler is called in asynchronous mode. Failing to handle
various signals, would likely cause our application to terminate, when it
receives such signals

Instructor:Arif Butt

Introduction to Signals (cont...)

15Punjab University College Of Information Technology (PUCIT)

Synchronous & Asynchronous Signals
● Signals may be generated synchronously or asynchronously
● Synchronous signals pertains to a specific action in the program

and is delivered (unless blocked) during that action. Examples:
● Most errors generate signals synchronously
● Explicit request by a process to generate a signal for the same

process
● Asynchronous signals are generated by the events outside the

control of the process that receives them. These signals arrive at
unpredictable times during execution. Examples include:

● External events generate requests asynchronously
● Explicit request by a process to generate a signal for some

other process

Instructor:Arif Butt

16Punjab University College Of Information Technology (PUCIT)

Signal Delivery and Handler Execution
Instructor:Arif Butt

Start of program

Program Code

Instruction n

Instruction n+1

F
lo

w
 of e

xecu
tion

Signal Handler

Code of signal
handler is
executed

1

2

4

3

return

Program resumes at point of interruption

Kernel calls S.H on behalf of process

exit()

Signal delivery

5

17Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

 Signal Handling on the Shell
Proof of Concept

I hear & I forget;
I see & I remember;
I do & I understand.

18Punjab University College Of Information Technology (PUCIT)

● Every signal has a symbolic name and an integer value associated with
it, defined in /usr/include/asm-generic/signal.h

● You can use following shell command to list down the signals on your
system:

$ kill -l
● Linux supports 32 real time signals from SIGRTMIN (32) to

SIGRTMAX (63). Unlike standard signals, real time signals have no
predefined meanings, are used for application defined purposes. The
default action for an un-handled real time signal is to terminate the
receiving process. See also $ man 7 signal

Instructor:Arif Butt

Signal Numbers and Strings

19Punjab University College Of Information Technology (PUCIT)

Sending Signals to Processes
A signal can be issued in one of the following ways:

● Using Key board

● <Ctrl+c> gives SIGINT(2)

● <Ctrl+\> gives SIGQUIT(3)

● <Ctrl+z> gives SIGTSTP(20)

● Using Shell command

● kill -<signal> <PID> OR kill -<signal> %<jobID>

● If no signal name or number is specified then default is to send
SIGTERM(15) to the process

● Do visit man pages for jobs, ps, bg and fg commands

● bg gives SIGTSTP(20) while fg gives SIGCONT(18)

● Using kill() or raise() system call

● Implicitly by a program (division by zero, issuing an invalid addr, termination of a child process)

Instructor:Arif Butt

20Punjab University College Of Information Technology (PUCIT)

Signal Disposition
Upon delivery of a signal, a process carries out one of the following
default actions, depending on the signal: [$man 7 signal]

1. The signal is ignored; that is, it is discarded by the kernel and has no
effect on the process. (The process never even knows that it occurred)

2. The process is terminated (killed). This is sometimes referred to as
abnormal process termination, as opposed to the normal process
termination that occurs when a process terminates using exit()

3. A core dump file is generated, and the process is terminated. A core
dump file contains an image of the virtual memory of the process,
which can be loaded into a debugger in order to inspect the state of the
process at the time that it terminated

4. The process is stopped—execution of the process is suspended
(SIGSTOP, SIGTSTP)

5. Execution of the process is resumed which was previously stopped
(SIGCONT, SIGCHLD)

Instructor:Arif Butt

21Punjab University College Of Information Technology (PUCIT)

Signal Disposition (cont...)
● Each signal has a current disposition which determines how the

process behave when the OS delivers it the signal

● If you install no signal handler, the run time environment sets up a set
of default signal handlers for your program. Different default actions
for signals are:

Instructor:Arif Butt

TERM Abnormal termination of the program with _exit() i.e, no
clean up. However, status is made available to wait() &
waitpid() which indicates abnormal termination by the
specified signal

CORE Abnormal termination with additional implementation
dependent actions, such as creation of core file may occur

STOP Suspend/stop the execution of the process
CONT Default action is to continue the process if it is currently stopped

22Punjab University College Of Information And Technology(PUCIT)

Important Signals
Instructor:Arif Butt

SIGHUP(1) Informs the process when the user who run the process logs out. When a
terminal disconnect (hangup) occurs, this signal is sent to the controlling
process of the terminal. A second use of SIGHUP is with daemons. Many
daemons are designed to respond to the receipt of SIGHUP by
reinitializing themselves and rereading their configuration files.

SIGINT(2) When the user types the terminal interrupt character (usually <Control+C>,
the terminal driver sends this signal to the foreground process group. The
default action for this signal is to terminate the process.

SIGKILL(9) This is the sure kill signal. It can’t be blocked, ignored, or caught by a
handler, and thus always terminates a process.

SIGPIPE(13) This signal is generated when a process tries to write to a pipe, a FIFO, or a
socket for which there is no corresponding reader process. This normally
occurs because the reading process has closed its file descriptor for the IPC
channel

SIGALRM(14) The kernel generates this signal upon the expiration of a real-time timer set
by a call to alarm() or setitimer()

SIGTERM(15) Used for terminating a process and is the default signal sent by the kill
command. Users sometimes explicitly send the SIGKILL signal to a
process, however, this is generally a mistake. A well-designed application
will have a handler for SIGTERM that causes the application to exit
gracefully, cleaning up temporary files and releasing other resources
beforehand. Killing a process with SIGKILL bypasses SIGTERM handler.

(Default Behavior: Term)

23Punjab University College Of Information Technology (PUCIT)

Important Signals
Instructor:Arif Butt

SIGQUIT(3) When the user types the quit character (Control+\) on the keyboard, this
signal is sent to the foreground process group. Using SIGQUIT in this
manner is useful with a program that is stuck in an infinite loop or is
otherwise not responding. By typing Control-\ and then loading the
resulting core dump with the gdb debugger and using the backtrace
command to obtain a stack trace, we can find out which part of the program
code was executing

SIGILL(4) This signal is sent to a process if it tries to execute an illegal (i.e.,
incorrectly formed) machine-language instruction module

SIGFPE(9) Generate by floating point Arithmetic Exception

SIGSEGV(11) Generated when a program makes an invalid memory reference. A
memory reference may be invalid because the referenced page
doesn’t exist (e.g., it lies in an unmapped area somewhere between
the heap and the stack), the process tried to update a location in read-
only memory (e.g., the program text segment or a region of mapped
memory marked read-only), or the process tried to access a part of
kernel memory while running in user mode. In C, these events often
result from dereferencing a pointer containing a bad address. The
name of this signal derives from the term segmentation violation

(Default Behavior: Core)

24Punjab University College Of Information Technology (PUCIT)

Important Signals (cont...)
Instructor:Arif Butt

SIGSTOP(19) This is the sure stop signal. It can’t be blocked, ignored, or
caught by a handler; thus, it always stops a process

SIGTSTP(20) This is the job-control stop signal, sent to stop the foreground
process group when the user types the suspend character
(usually <Control+Z>) on the keyboard.. The name of this
signal derives from “terminal stop”

Default Behavior: Stop

Default Behavior: Cont
SIGCHILD(17) This signal is sent (by the kernel) to a parent process when

one of its children terminates (either by calling exit() or as
a result of being killed by a signal). It may also be sent to a
process when one of its children is stopped or resumed by a
signal

SIGCONT(18) When sent to a stopped process, this signal causes the process
to resume (i.e., to be rescheduled to run at some later time).
When received by a process that is not currently stopped, this
signal is ignored by default. A process may catch this signal,
so that it carries out some action when it resumes

25Punjab University College Of Information Technology (PUCIT)

Masking of Signals
● A signal is generated by some event. Once generated, a signal is later

delivered to a process, which then takes some action in response to the
signal. Between the time it is generated and the time it is delivered, a
signal is said to be pending. Normally, a pending signal is delivered to
a process as soon as it is next scheduled to run, or immediately if the
process is already running (e.g., if the process sent a signal to itself).
There can be at most one pending signal of any particular type, i.e.,
standard signals are not queued

● Sometimes, however, we need to ensure that a segment of code is not
interrupted by the delivery of a signal. To do this, we can add a signal to
the process’s signal mask—a set of signals whose delivery is currently
blocked. If a signal is generated while it is masked/blocked, it remains
pending until it is later unmasked or unblocked (removed from the
signal mask)

Instructor:Arif Butt

26Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Sending Signals to Processes
 in a C Program

27Punjab University College Of Information Technology (PUCIT)

kill() System call
Instructor:Arif Butt

● One process can send a signal to another process using the
kill() system call

● The pid argument identifies one or more processes to which the
signal specified by sig is to be sent

● If sig is zero then normal error checking is performed but no
signal is sent. Used to determine if a specified process still exists.
If it doesn't exist, a -1 is returned & errno is set to ESRCH

● If no process matches the specified pid, kill() fails and sets
errno to ESRCH

int kill(pid_t pid, int sig);

28Punjab University College Of Information Technology (PUCIT)

kill() System call (cont...)
Instructor:Arif Butt

Four different cases determine how pid is interpreted:

● If pid > 0, the signal is sent to the process with the process ID
specified by first argument

● If pid == 0, the signal is sent to every process in the same process
group as the calling process, including the calling process itself

● If pid < –1, the signal is sent to every process in the process group
whose PGID equals the absolute value of pid

● If pid == –1, the signal is sent to every process for which the calling
process has permission to send a signal, except init and the calling
process. If a privileged process makes this call, then all processes on
the system will be signaled, except for these last two

int kill(pid_t pid, int sig);

29Punjab University College Of Information Technology (PUCIT)

raise() Library call
Instructor:Arif Butt

● Sometimes, it is useful for a process to send a signal to itself. The raise()
function performs this task

● In a single-threaded program, a call to raise() is equivalent to the
following call to kill():

kill(getpid(), sig);

● When a process sends itself a signal using raise() or kill(), the signal
is delivered immediately (i.e., before raise() returns to the caller)

● Note that raise() returns a nonzero value (not necessarily –1) on error.
The only error that can occur with raise() is EINVAL, because sig was
invalid

int raise(int sig);

30Punjab University College Of Information Technology (PUCIT)

abort() Library call
Instructor:Arif Butt

● The abort() function terminates the calling process by raising a
SIGABRT signal. The default action for SIGABRT is to produce a core
dump file and terminate the process. The core dump file can then be
used within a debugger to examine the state of the program at the time
of the abort() call

● abort() function never returns

void abort();

31Punjab University College Of Information Technology (PUCIT)

pause() System call
Instructor:Arif Butt

● The pause() system call causes the invoking process/thread to
sleep until a signal is received that either terminates it or causes it
to call a signal catching function

● The pause() function only returns when a signal was caught
and the signal-catching function returned. In this case pause()
returns -1, and errno is set to EINTR

int pause();

32Punjab University College Of Information Technology (PUCIT)

alarm() System call
Instructor:Arif Butt

● The alarm() system call is used to ask the OS to send calling process a
special signal SIGALARM(14) after a given number of seconds. If seconds is
zero no new alarm is scheduled

● This function returns the previously registered alarm clock for the process that
has not yet expired, i.e., the number of seconds left for that alarm clock is
returned as the value of this function. Previously registered alarm clock is
replaced by new value

● UNIX like systems do not operate as real-time systems, so your process might
receive this signal after a longer time than requested. Moreover, there is only
one alarm clock per process. Can be used for following purposes:
● To check timeouts (e.g., wait for user input up to 30 seconds, else exits)
● To check some conditions on a regular basis (e.g., if a server has not

responded in last 30 seconds, notify the user and exits)

unsigned int alarm(unsigned int seconds);

33

Adding a Delay: using sleep()
Instructor:Arif Butt

Punjab University College Of Information Technology (PUCIT)

● These calls causes the calling thread to sleep (suspend execution) either
until the number of specified in seconds specified in the argument have
elapsed or until a signal arrives which is not ignored

● Returns zero if the requested time has elapsed, or the number of seconds left
to sleep, if the call was interrupted by a signal handler

struct timespec {
 time_t tv_sec; /* seconds */

 long tv_nsec; /* nanoseconds */

};

int sleep(unsigned int secs);
int usleep(useconds_t usec);
int nanosleep(const struct timespec* req,
 struct timespec* rem);

34Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Sending Signals
Proof of Concept
sig1.c – sig5.c

35Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Ignoring Signals and Writing SHs
using

signal()

36Punjab University College Of Information Technology (PUCIT)

● To change the disposition of a particular signal a programmer can use the
signal() system call, which installs a new signal handler for the signal
with number signum

● The second parameter can have three values

i) SIG_IGN: the signal is ignored

ii) SIG_DFL: the default action associated with signal occur

iii) A user specified function address, which is passed an integer argument
and returns nothing

● The signal() system call returns the previous signal handler, or SIG_ERR
on error

● The signals SIGKILL and SIGSTOP cannot be caught. Moreover, the
behavior of a process is undefined after it ignores SIGFPE, SIGILL or
SIGSEGV signal that was not generated by kill() or raise() functions

Instructor:Arif Butt

sighandler_t signal(int signum, void (*sh)(int));

signal() System call

37Punjab University College Of Information Technology (PUCIT)

Handling Signals
Instructor:Arif Butt

void (*oldhandler)(int);
oldhandler = signal(SIGINT, newhandler);

if (signal(SIGINT,oldhandler) == SIG_ERR){---}

If SIGINT is delivered, oldhandler
will be used to handle signal

If SIGINT is delivered, newhandler
will be used to handle signal

38Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Proof of Concept
usingsignal/ignoringsig/ignoringsig.c

usingsignal/handlingsig/handler1.c – handler5.c

39Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Masking Signals
using

sigprocmask()

40Punjab University College Of Information Technology (PUCIT)

Avoiding Race Conditions Using Signal Mask
Instructor:Arif Butt

● One of the problems that might occur when handling a signal, is the
occurrence of a second signal while the signal handler function is
executing

● A process can temporarily prevent signals from being delivered, by
blocking/masking it, while it is doing some thing critical, or while it is
executing inside a signal handler

● Every process has a signal mask that defines the set of signals
currently blocked for that process. One bit for each possible signal. If
a bit is ON, that signal is currently blocked

● Since it is possible for the number of signals to exceed to number of
bits in an integer, therefore, POSIX.1 defines a data type called
sigset_t that holds a signal set of a process

● When a process blocks a signal, the OS doesn’t deliver signal until the
process unblocks the signal. However, when a process ignores a
signal, signal is delivered and the process handles it by throwing it
away

● Remember, after a fork(), child process inherits its parent mask

41Punjab University College Of Information Technology (PUCIT)

Functions related to Signal Sets

To create a process signal mask, you need to create a variable of type
sigset_t. The sigemptyset() function initializes a signal set to
contain no members, while the sigfillset() function initializes a set
to contain all signals. After initialization, individual signals can be added
to a set using sigaddset() and removed using sigdelset(). There
are two ways to initialize a signal set:

● You can initially specify it to be empty with sigemptyset() and
then add specified signals individually using sigaddset()

● You can initially specify it to be full with sigfillset() and then
delete specified signals individually using sigdelset()

Instructor:Arif Butt

int sigemptyset(sigset_t *set);
int sigfillset(sigset_t *set);
int sigaddset(sigset_t *set, int sig);
int sigdelset(sigset_t *set, int sig);

42Punjab University College Of Information Technology (PUCIT)

Setting the Process Signal Mask
Instructor:Arif Butt

int sigprocmask(int how,const sigset_t* nset, sigset_t* oset);

● The sigprocmask() allows us to get the existing signal mask or set a
new signal mask of a process

● The second argument specifies the new signal mask. It it is NULL, then the
signal mask is unchanged

● The third argument will store the old mask of the process. This is useful
when we want to restore the previous masking state once we're done with our
critical section

● The first argument how actually determines how the process signal mask
will be changed. It can have following three values:

SIG_BLOCK The set of blocked signals is the union of nset and the
current signal set oset

SIG_UNBLOCK The signals in the nset are removed from the current set of
blocked signals. It is legal to attempt to unblock a signal
which is not blocked

SIG_SETMASK The set of blocked signals is set to the argument nset

43Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Proof of Concept
usingsignal/maskingsig/sigprocmask.c

44Punjab University College Of Information Technology (PUCIT)

Limitations of signal() System call
Instructor:Arif Butt

● Using the signal() call, we cannot determine the current
disposition of a signal without changing the disposition.
Example: If we want to determine the current disposition of
SIGINT, we can't do it without changing the current disposition

sighandler_t oldHandler = signal(SIGINT, &newHandler);

● If we use signal(), to register a handler for a signal, it is
possible that after we entered the signal handler, but before we
managed to mask all the signals using sigprocmask(), we
receive another signal, which WILL be called

● There are a lot of variations in the behavior of signal() call
across UNIX implementations

45Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Ignoring Signals, Masking Signals and
Writing SHs

using

sigaction()

46Punjab University College Of Information Technology (PUCIT)

● Although sigaction() is somewhat more complex to use than
signal(), it gives following advantages over signal():
● sigaction() allows us to retrieve the disposition of a signal

without changing it, and to set various attributes controlling precisely
what happens when a signal handler is invoked

● sigaction() is more portable than signal()
● The first argument signum identifies the signal whose disposition we

want to retrieve or change
● The second argument newact is a pointer to a structure specifying a

new disposition for the signal. If we are interested only in finding the
existing disposition of the signal, then we can specify NULL for this
argument

● The third argument oldact is used to return information about the
signal’s previous disposition. If we are not interested in this information,
then we can specify NULL for this argument

Instructor:Arif Butt

int sigaction(int signum, const struct sigaction*
 newact, struct sigaction* oldact);

sigaction() System call

47Punjab University College Of Information Technology (PUCIT)

● The structures pointed to by third and fourth argument to sigaction
is of following type:

struct sigaction {
 void (*sa_handler)(int);
 sigset_t sa_mask;
 int sa_flags;
};

● The sa_handler field specifies the pointer to the handler function
● The sa_mask field specifies the process signal mask to be set while

this signal is being handled
● The sa_flags field contains flags that effect signal behavior,

normally it is set to zero

Instructor:Arif Butt

sigaction() System call (cont...)

48Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Proof of Concept
usingsigaction/ignoringsig.c
usingsigaction/handler1.c

49Punjab University College Of Information Technology (PUCIT)

Things To Do
Instructor:Arif Butt

I f y o u h a v e p r o b l e m s v i s i t m e i n c o u n s e l i n g h o u r s

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

