
1Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Lecture # 5.2
Programming the UNIX

PIPES & FIFOS

Course: Advance Operating System

Instructor: Arif Butt

Punjab University College of Information Technology (PUCIT)
University of the Punjab

Source Code files available at: https://bitbucket.org/arifpucit/spvl-repo/src
Lecture Slides available at: http://arifbutt.me

2Punjab University College Of Information And Technology(PUCIT)

Today's Agenda
Instructor:Arif Butt

● UNIX Pipes on the Shell
● Creating and using pipes in C Program

● Within a single process
● Between two related processes
● Bidirectional Communication using Pipes

● Emulate the shell command $ cat <filename> | wc
● Emulate the shell command $ man ls | grep ls | wc
● Introduction to UNIX Named Pipes
● Illustration showing the working of FIFO
● Working with FIFOs on the Shell
● Communicating via FIFO in a C Program
● Bidirectional Communication using FIFOs

3Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

UNIX Pipes
On the Shell

4Punjab University College Of Information Technology (PUCIT)

Introduction to Pipes
Instructor:Arif Butt

● History of Pipes: Pipes history goes back to 3rd edition of UNIX
in 1973. They have no name and can therefore be used only
between related processes. This was corrected in 1982 with the
addition of FIFOs

● Byte stream: When we say that a pipe is a byte stream, we mean
that there is no concept of message boundaries when using a pipe.
Each read operation may read an arbitrary number of bytes
regardless of the size of bytes written by the writer. Furthermore,
the data passes through the pipe sequentially, bytes are read from
a pipe in exactly the order they were written. It is not possible to
randomly access the data in a pipe using lseek()

● Pipes are unidirectional: Data can travel only in one direction.
One end of the pipe is used for writing, and the other end is used
for reading

5Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Reading from a pipe:
● When a process reads bytes from a pipe, those bytes are removed

from the pipe (Destructive read semantics)
● By default, when a process attempts to read from a pipe that is

currently empty, the read call blocks until some bytes are written
into the pipe

● If the write end of a pipe is closed, and a process tries to read, it
will receive and EOF character, i.e., read() returns 0

● If two processes try to read from the same pipe, one process will
get some of the bytes from the pipe, and the other process will get
the other bytes. Unless the two processes use some method to
coordinate their access to the pipe, the data they read are likely to
be incomplete

Introduction to Pipes (cont...)

6Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Writing to a pipe:
● By default, when a process attempts to write to a pipe that is

currently full, the write(2) call blocks until there is enough
space in the pipe

● If a process tries to write, say, 1000 bytes, and there is room for
500 bytes only, the call waits until 1000 bytes of space are
available

● If the read end of a pipe is closed and a process tries to write, the
kernel sends SIGPIPE to the writer process

Introduction to Pipes (cont...)

7Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

● Size of Pipe:
● If multiple processes are writing to a single pipe, then it is

guaranteed that their data won’t be intermingled if they write no
more than PIPE_BUF bytes at a time

● This is because writing PIPE_BUF number of bytes to a pipe is
an atomic operation. On Linux, value of PIPE_BUF is 4096

● When writing more bytes than PIPE_BUF to a pipe, the kernel
may transfer the data in multiple smaller pieces, appending
further data as the reader removes bytes from the pipe. The
write() call blocks until all of the data has been written to the
pipe

● When there is a single writer process, this doesn’t matter. But in
case of multiple writer processes, this may cause problems

Introduction to Pipes (cont...)

8Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

UNIX Pipes
In a C Program

9Punjab University College Of Information Technology (PUCIT)

Creating a UNIX Pipe
Instructor:Arif Butt

● A pipe is created by calling the pipe() system call
● Creating a pipe is similar to opening two files. A successful call to
pipe() returns two open file descriptors in the array fd; one
contains the read descriptor of the pipe, fd[0], and the other contains
the write descriptor of the pipe fd[1]

● As with any file descriptor, we can use the read() and write()
system calls to perform I/O on the pipe. Once written to the write end
of a pipe, data is immediately available to be read from the read end. A
read() from a pipe blocks if the pipe is empty

● From an implementation point of view, a pipe is a fixed-size main
memory circular buffer created and maintained by the kernel. The
kernel handles the synchronization required for making the reader
process wait when the pipe is empty and the writer process wait when
the pipe is full

int pipe(int fd[2]);

10Punjab University College Of Information Technology (PUCIT)

Creating a UNIX Pipe
Instructor:Arif Butt

● The pipe2() system call can also be used to create a pipe. The
second argument flags in pipe2() is used to control the attributes
of the pipe descriptors. A zero in the flags argument make pipe2()
behave like pipe() system call

● The second argument can be a bit-wise OR of two values:
● O_CLOEXEC: Set the close-on-exec flag on the pipe descriptors,

i.e., when a process executes an exec() system call, it does not
inherit an already open pipe

● O_NONBLOCK: Set pipe descriptors for nonblocking I/O
● We can also use the stdio functions (printf(), scanf(), and so

on) with pipes by first using fdopen() to obtain a file stream
corresponding to one of the descriptors in fd. However, when doing
this, we must be aware of the stdio buffering issues

int pipe2(int fd[2], int flags);

11Punjab University College Of Information Technology (PUCIT)

Use of Pipe in a Single Process
Instructor:Arif Butt

User Space

Kernel Space

$./a.out

Uni-directional

Byte Stream

fd[0]fd[1]
Read descriptor of pipeWrite descriptor of pipe

int fd[2];
pipe(fd);
int cw = write(fd[1],msg, strlen(msg));
int cr = read(fd[0], buf, cw);
write(1, buf, cr);

flags ptr

PPFDT

0

1
2

OPENMAX-1

3

4

fd[0]

fd[1]
fd[1] fd[0]

Write end of pipe Read end of pipe

stdin

stdout
stderr

12Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Pipe in a Single Process
Proof of Concept

pipe1.c

13Punjab University College Of Information Technology (PUCIT)

Use of Pipe Between two Related Processes
Instructor:Arif Butt

User Space

Kernel Space

Uni-directional

Byte Stream

fd[0]fd[1]

Parent Process

fd[0]fd[1]

Child Processfork()

flags ptr

PPFDT

0

1
2

OPENMAX-1

3

4

flags ptr

PPFDT

0

1
2

OPENMAX-1

3

4

(Reader)(Writer)

fd[0]

fd[1]

fd[0]

fd[1]

14Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Pipe Between Related Processes
Proof of Concept

pipe2.c

15Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

User Space

Kernel Space

Uni-directional

Byte Stream

fd1[0]fd2[1]

Parent Process

fd2[0]fd1[1]

Child Processfork()

flags ptr

PPFDT

0
1

2
3
4

Bidirectional Comm Using Pipes

Uni-directional

Byte Stream5

6

flags ptr

PPFDT

0
1

2
3
4

5

6

fd1[1]

fd2[0]

fd1[0]

fd2[1]

fd1[0]

fd2[1]

fd1[1]

fd2[0]

16Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Bidirectional Communication
Proof of Concept

pipe3.c

17Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

stdin stdout stdin stdout

User Space

Kernel Space

cat f1.txt wc

Let us try writing a program that simulate the shell command
cat f1.txt | wc

Uni-directional

Byte Stream

Example: cat f1.txt | wc

flags ptr

PPFDT of cat

0

1
2

OPENMAX-1

3

4

fd[1]

stdin

stderr

flags ptr

PPFDT of wc

0

1
2

OPENMAX-1

3

4

stdout

fd[0]

stderr

fd[1] fd[0]

18Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Simulate a Shell Command
cat f1.txt | wc -l

Proof of Concept
pipe4.c

19

Instructor:Arif Butt

stdin stdout stdin stdout stdin stdout

User Space

Kernel Space

man grep wc

Uni-directional

Byte Stream

Uni-directional

Byte Stream

Example: man ls | grep ls | wc -l

flags ptr

PPFDT of man

0

1
2

OPENMAX-1

3

4

fd1[1]

stdin

stderr

flags ptr

PPFDT of grep

0

1
2

OPENMAX-1

3

4

fd2[1]

fd1[0]

stderr

flags ptr

PPFDT of wc

0

1
2

OPENMAX-1

3

4

stdout

fd2[0]

stderr

fd1[1] fd1[0] fd2[1] fd2[0]

Parent
Process

20Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Simulate a Shell Command
man ls | grep ls | wc -l

Proof of Concept
pipe5.c

21Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Named Pipes
Or

FIFOS

22Punjab University College Of Information And Technology(PUCIT)

Introduction to FIFOs
Instructor:Arif Butt

● Pipes have no names, and their biggest disadvantage is that they can be
only used between processes that have a parent process in common
(ignoring descriptor passing)

● UNIX FIFO is similar to a pipe, as it is a one way (half duplex) flow of
data. But unlike pipes a FIFO has a path name associated with it
allowing unrelated processes to access a single pipe

● FIFOs/named pipes are used for communication between related or
unrelated processes executing on the same machine

● A FIFO is created by one process and can be opened by multiple
processes for reading or writing. When processes are reading or writing
data via FIFO, kernel passes all data internally without writing it to the
file system. Thus a FIFO file has no contents on the file system; the
file system entry merely serves as a reference point so that processes
can access the pipe using a name in the file system

23Punjab University College Of Information Technology (PUCIT)

Use of FIFO Between Unrelated Processes
Instructor:Arif Butt

User Space

Kernel Space

Uni-directional

Byte Stream

P1 P2

$ echo “Hello PUCIT” 1> fifo1 $ cat fifo1

fifo1

24Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

UNIX Named Pipes (FIFOs)
On the Shell

Proof of Concept

25Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

int mkfifo(const char*pathname, mode_t mode);

● Makes a FIFO special file with name pathname. The second
argument mode specifies the FIFO’s permissions. It is modified by the
process’s umask in the usual way: (mode & ~umask)

● Once you have created a FIFO, any process can open it for reading or
writing, in the same way as an ordinary file. Opening a FIFO for
reading normally blocks until some other process opens the same
FIFO for writing, and vice versa

● Call Fails when:
● Parent directory does not allow write permission
● Path name already exists
● Path name points outside accessible address space
● Path name too long
● Insufficient kernel memory

mkfifo() Library Call

26Punjab University College Of Information Technology (PUCIT)

mknod() System Call
Instructor:Arif Butt

int mknod(const char*name, mode_t mode, dev_t device);

● The mknod() system call creates a FIFO file with name
mentioned as the first argument

● The second argument mode specifies both the permissions to use
and the type of node to be created. It should be a combination (using
bitwise OR) of one of the file types (S_IFREG, S_IFIFO,
S_IFCHR, S_IFBLK, S_IFSOCK) and the permissions for the
file

● For creating a named pipe the third argument is set to zero. However,
to create a character or block special file we need to mention the
major and minor numbers of the newly created device special file

27Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

User Space

Kernel Space

Communication Using FIFO

Uni-directional

fifo1

flags ptr

PPFDT

0

1
2

OPENMAX-1

3

4

writefd

flags ptr

PPFDT

0

1
2

OPENMAX-1

3

4

readfd

writer reader

fifo1

writefd readfd

28Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Communication using FIFO
Proof of Concept

ex2/writer.c – ex2/reader.c

29Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

User Space

Kernel Space

Uni-directional

fifo1

Bidirectional Comm Using FIFOs

Uni-directional

fifo2
flags ptr

PPFDT

0

1
2

OPENMAX-1

3

4

readfd

writefd

flags ptr

PPFDT

0

1
2

OPENMAX-1

3

4

writefd

readfd

teacher student

fifo1 fifo2

readfd

writefd

writefd

readfd2
1

3

4 5

6

30Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Bidirectional Comm using FIFOs
Proof of Concept

ex3/teacher.c – ex3/student.c

31Punjab University College Of Information Technology (PUCIT)

Things To Do
Instructor:Arif Butt

I f y o u h a v e p r o b l e m s v i s i t m e i n c o u n s e l i n g h o u r s

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

