
1Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Lecture # 5.5
Memory Mapped Files

Course: Advance Operating System

Instructor: Arif Butt

Punjab University College of Information Technology (PUCIT)
University of the Punjab

Source Code files available at: https://bitbucket.org/arifpucit/spvl-repo/src
Lecture Slides available at: http://arifbutt.me



2Punjab University College Of Information Technology (PUCIT)

Today's Agenda
Instructor:Arif Butt

● Introduction to Memory Mapped Files

● Location of Memory Mappings

● Shared File Mapping

● Private File Mapping

● Use of mmap(), msync(), and munmap()

● Sample Codes using Memory Mapped Files



3Punjab University College Of Information Technology (PUCIT)

Memory Mapped Files
Instructor:Arif Butt

● A memory-mapped file is mostly a segment of virtual memory
that has been assigned a direct byte-for-byte correlation with
some portion of a file on disk 

● Memory mapped I/O let us map a file on disk into a buffer in
process address space, so that,  when we fetch bytes from the
buffer, the corresponding bytes of the file are read. Similarly,
when we store data in the buffer, the corresponding bytes are
automatically written to the file. This lets us perform I/O without
using read() or write() system calls

● There are two types of memory mapped files:
➔ Persisted / File Mapping
➔ Non-Persisted / Anonymous Mapping



4Punjab University College Of Information Technology (PUCIT)

Location of Memory Mappings in Virtual Memory
Instructor:Arif Butt

file1.txt

Memory Mapped Portion
Of File

offset

MM portion
of file

len

Start address

len



5Punjab University College Of Information Technology (PUCIT)

Shared File Mapping
Instructor:Arif Butt

● Multiple processes mapping the same region of a file share the
same physical pages of memory. Whenever a process tries to
write, the modifications to the contents of the mapping are
carried through to the file 

● Main uses of shared file mapping is:
➔ Memory-mapped I/O
➔ IPC in a manner similar to System V shared memory

segments between related or unrelated processes 



6Punjab University College Of Information Technology (PUCIT)

Private File Mapping
Instructor:Arif Butt

● Modifications are not visible to other processes. Multiple
processes mapping the same file initially share the same physical
pages of memory. Whenever a process tries to write, copy-on-
write technique is employed, so that changes to the mapping by
one process are invisible to other processes

● The main use of private file mapping is initializing a process’s
text and initialized data segments from the corresponding parts
of a binary executable file or a shared library file 



7Punjab University College Of Information Technology (PUCIT)

mmap() System Call
Instructor:Arif Butt

● The mmap()  system call is used to request the creation of memory
mappings in the address space of the calling process. On success, it
returns the starting address of the mapping 

● The first argument addr  argument indicates the virtual address at
which the mapping is to be located. Preferably, we should give NULL,
so that the kernel chooses a suitable address for the mapping that
doesn't conflict with any existing mapping

● The second argument len  specifies the size of the mapping in bytes.
To map an entire file, we put len as size of the file. Normally, Kernel
creates mappings rounded up to the next multiple of the page size

● The third argument prot  is a bit mask specifying the permissions
(PROT_READ, PROT_WRITE, PROT_EXEC) 

void *mmap(void * addr , size_t len , int prot,
            int flags, int fd , off_t offset);



8Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

● The fourth argument flags  can be either MAP_PRIVATE  or
MAP_SHARED (as discussed)

● The fifth argument fd  is a file descriptor identifying the file to be
mapped

● The sixth argument offset specifies the starting point of the
mapping in the file. To map the entire file, we would specify
offset as 0 and len as the size of the file

● The last two arguments are ignored for non-persisted or anonymous
mapping. We normally put -1 for fd  and a zero for offset  for
anonymous mapping

void *mmap(void * addr , size_t len , int prot,
            int flags, int fd , off_t offset)

mmap() System Call (cont...)



9Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

● The msync()  function causes the changes in part or all of the
memory segment to be written back to (or read from) the mapped
file 

● The first argument addr  is the address that is returned by the
mmap() call

● The second argument len specifies the length of mapping
● The third argument flags  controls how the update should be

performed. It can have following three values:

int msync(void *addr, size_t len, int flag);

Flag Description
MS_ASYNC Request update and returns immediately
MS_SYNC Request update and waits for it to complete

MS_INVALIDATE Invalidate other mappings of same file

msync() System Call



10Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

● This simply unmaps the memory mapped region pointed to by
addr with length len 

● Normally, we unmap an entire mapping. Thus, we specify addr 
as the address returned by a previous call to mmap(), and
specify the same length value as was used in the mmap() call

● The memory mapped region is automatically unmapped when a
process terminates or performs an exec

● Closing the file fd does not unmap the region

int munmap(void * addr, size_t len)

munmap() System Call



11Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Memory Mapped Files
Proof of Concept

mmap1.c, mmap2.c, mmap3.c



12Punjab University College Of Information Technology (PUCIT)

Things To Do
Instructor:Arif Butt

I f y o u h a v e p r o b l e m s v i s i t m e i n c o u n s e l i n g h o u r s . . . .


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

