
1Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Lecture # 6.1
Synchronization Among Threads

Course: Advance Operating System

Instructor: Arif Butt

Punjab University College of Information Technology (PUCIT)
University of the Punjab

Source Code files available at: https://bitbucket.org/arifpucit/spvl-repo/src
Lecture Slides available at: http://arifbutt.me

2Punjab University College Of Information Technology (PUCIT)

Today's Agenda
Instructor:Arif Butt

● Recap of POSIX Threads

● Overview of Synchronization

● Race Condition and Critical Section Problem

● Data Sharing among Threads

● Thread Safety and Re-entrant Functions

● Solution to CSP using pthread_mutex_t

● Mutex Attribute Object pthread_mutexattr_t

● Producer Consumer Problem

● Condition Variables

3Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

POSIX Threads
A Quick Recap

4Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Overview of
Synchronization

5 5

Overview of Synchronization
● In computer science synchronization refers to the relationships

among events, e.g., before, during or after
● There are two constraints of synchronization:

➔ Serialization: Event A must happen before event B
➔ Mutual Exclusion: Event A and B must not happen at the same

time
● In multi-threaded programs, the programmer has no control over

when a thread runs, as the scheduler makes this decision
● Concurrent programs are often non-deterministic, which means it is

not possible to tell, by looking at the program what will happen
when it will execute

● Concurrent access to shared data may result in data inconsistency,
so we need to apply some concurrency control mechanism using
which multiple threads can access shared data without any conflict

Instructor:Arif Butt

Punjab University College Of Information Technology (PUCIT)

6 6

Example: Deposit and Withdrawal

Deposit Process

Instructor:Arif Butt

Punjab University College Of Information Technology (PUCIT)

Withdrawal Process

D1: MOV R1, balance

D2: ADD R1, deposit_amt

D3: MOV balance, R1

W1: MOV R2, balance

W2: SUB R2, wdr_amt

W3: MOV balance, R2

Consider a bank account having a balance of Rs.100/. A deposit
process deposits Rs. 25/- thus updating the balance of that account to
Rs.125/. A withdrawal process runs and withdraws Rs.10/-, thus
updating the balance of that account to Rs.115/. The instruction that
updates the balance variable can be written in assembly as shown
below:

● Scenario 1: D1, D2, D3, W1, W2, W3 (balance = Rs.115/-)
● Scenario 2: D1, D2, W1, W2, D3, W3 (balance = Rs.90/-)
● Scenario 2: D1, D2, W1, W2, W3, D3 (balance = Rs.125/-)

Suppose both the processes run concurrently

7Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Race Condition and Critical Section
Proof of Concept
race1.c, race2.c

8 8

Data Sharing Among Threads
Normally modifying an object requires several steps. While
these steps are being carried out the object is typically not in a
well formed state. If another thread tries to access the object
during that time, it will likely get a corrupt information. The
entire program might have undefined behavior after wards

 What data is shared?
● Global data and static local data. The case of static local data is

only significant if two (or more) threads execute the function
containing static local variable at the same time

● Dynamically allocated data (in heap) that has had its address
put into a global/static variable

● Data members of a class object that has two (or more) of its
member functions called by different threads at the same time

Instructor:Arif Butt

Punjab University College Of Information Technology (PUCIT)

9 9

Data Sharing among Threads (cont...)

Instructor:Arif Butt

What Data is not Shared ?
● Local variables are not shared. Even if two threads call the same

function they will have different copies of the local variable in that
function. This is because the local variables are kept on stack and every
thread has its own stack

● Function parameters are not shared. In Languages like C, the parameters
of function are also put on the stack & thus every thread will have its
own copy of those as well

Punjab University College Of Information Technology (PUCIT)

10Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Data Sharing among Threads
Proof of Concept

shareddata.c

11Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Threads Safety

12Punjab University College Of Information Technology (PUCIT)

Thread Safe vs Reentrant Functions
Instructor:Arif Butt

● A thread safe function can be called simultaneously from
multiple threads, even when the invocations use shared data. This
is because each thread accesses shared data using some
concurrency control mechanism

● A reentrant function can also be called simultaneously from
multiple threads, but only if each invocation uses its own data

● Therefore, a thread-safe function is always reentrant, but a
reentrant function is not always thread safe

Thread safe functions

REENTRANT functions

13Punjab University College Of Information Technology (PUCIT)

REENTRANT Functions (cont...)
Instructor:Arif Butt

So always compile your multi-threaded code with _REENTRANT defined:

$gcc -c thread1.c -D_REENTRANT
$gcc thread1.o -o thread1 -lpthread

OR
$gcc thread1.c -o thread1 -lpthread -D_REENTRANT

Thread Unsafe Functions Thread Safe Functions
(REENTRAMT versions)

asctime() asctime_r()

ctime() ctime_r()

gethostbyname() gethostbyname_r()

gethostbyaddr() gethostbyaddr_r()

rand() rand_r()

localtime() localtime_r()

crypt() crypt_r()

14Punjab University College Of Information Technology (PUCIT)

Four Classes of Thread Unsafe Functions
Instructor:Arif Butt

There are four classes of thread unsafe functions:

Class I: Failing to protect sheared variables

(Solution: Use locks to protect shared variable)

Class II: Relying on persistent state across invocations

(Solution: Do not use)

Class III: Returning a pointer to a static variable

(Solution: Do not use)

Class IV: Calling a thread unsafe function

(Solution: Call thread safe or re-entrant versions of functions)

15Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Synchronization
using Mutex

1616

 What is Mutex?
●A mutex is a MUTual EXclusion device, and is useful for

protecting shared data structures from concurrent modifications,
and implementing critical sections

● A mutex has two possible states: unlocked (not owned by any
thread), and locked (owned by one thread). It can never be owned
by two different threads simultaneously

● A thread attempting to lock a mutex that is already locked by
another thread is suspended until the owner thread unlocks the
mutex

● Linux guarantees that race condition do not occur among threads
attempting to lock a mutex

Instructor:Arif Butt

Punjab University College Of Information Technology (PUCIT)

1717

How to Use a Mutex?
i. Create and initialize a mutex variable

ii. Several threads attempt to lock the mutex

iii. Only one thread succeed and that thread owns the mutex

iv. The owner thread carry out operations on shared data

v. The owner threads unlock the mutex

vi. Another thread acquires the mutex and repeats the process

vii. Finally the mutex is destroyed

Instructor:Arif Butt

Punjab University College Of Information Technology (PUCIT)

1818

Mutex Initialization
Static Initialization: In case where default mutex attributes are
appropriate, the following macro can be used to initialize a mutex that is
statically allocated.

pthread_mutex_t mut = PTHREAD_MUTEX_INITIALIZER;

Instructor:Arif Butt

Run time initialization: In all other cases, we must dynamically initialize
the mutex using pthread_mutex_init()

int pthread_mutex_init (pthread_mutex_t* mptr,
 const pthread_mutexattr_t * attr);

Punjab University College Of Information Technology (PUCIT)

●This function initializes the mutex object pointed to by mptr according to
the mutex attributes specified in attr. If attr is NULL, default
attributes are used instead

1919

Locking, Unlocking and Destroying mutex

● The lock() call will lock the pthread_mutex_t object referenced by
mptr. If mutex is already locked, the calling thread blocks until the mutex is
unlocked

● The trylock() is similar to lock except that if the mutex object is currently
locked, the call returns immediately with the error code EBUSY

● The unlock()call release the mutex object. The manner in which a mutex is
released is dependent on the mutex's attribute type. If there are threads
blocked on the mutex object referenced by mptr when unlock() is called,
the scheduling policy shall determine which thread shall acquire the mutex

● The destroy()call destroys the mutex object

Instructor:Arif Butt

int pthread_mutex_lock(pthread_mutex_t *mptr);
int pthread_mutex_unlock(pthread_mutex_t *mptr);
int pthread_mutex_trylock(pthread_mutex_t *mptr);
int pthread_mutex_destroy(pthread_mutex_t *mptr);

Punjab University College Of Information Technology (PUCIT)

2020

Mutex Dead Locks
Be sure to observe following points to avoid dead locks while
using mutexes:

i. No thread should attempt to lock or unlock a mutex that has not
been initialized

ii. Only the owner thread of the mutex (i.e the one which has
locked the mutex) should unlock it

iii.Do not lock a mutex that is already locked

iv.Do not unlock a mutex that is not locked

v. Do not destroy a locked mutex

Instructor:Arif Butt

Punjab University College Of Information Technology (PUCIT)

21Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Handling CSP using pthread_mutex_t
Proof of Concept

solrace1.c, solrace2.c

22Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Mutex Attributes: type

2323

PTHREAD_MUTEX_INITIALIZER (fast mutex)
● Locking an already locked mutex results in suspending the calling thread
● Unlocking an already unlocked mutex results in undefined behavior
● Unlocking a mutex that is not locked by calling thread results in undefined behavior

PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP(error checking mutex)

● Locking an already locked mutex returns immediately with an error EDEADLK
● Unlocking an already unlocked mutex returns an error
● Unlocking a mutex that is not locked by calling thread returns an error

PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP (recursive mutex)

● Locking an already locked mutex returns immediately with a success return code.
The number of times the thread owning the mutex has locked it is recorded in the
mutex. The owning thread must call pthread_mutex_unlock() the same number of
times before the mutex returns to the unlocked state

● Unlocking an unlocked mutex returns an error
● Unlocking a mutex that is not locked by calling thread results in undefined behavior

Instructor:Arif Butt

Mutex Attributes

Punjab University College Of Information Technology (PUCIT)

2424

Mutex Attributes
Instructor:Arif Butt

int pthread_mutexattr_init(pthread_mutexattr_t *attr);
int pthread_mutexattr_settype(pthread_mutexattr_t *attr,

int kind);

Punjab University College Of Information Technology (PUCIT)

● A mutex has a set of attributes which can be set before creating it and passed
to the pthread_mutex_init() function as its second argument. (which
we have kept NULL in previous examples)

● The pthread_mutexattr_init() function initializes the mutex
attribute object attr and fills it with default values for the attributes

●The pthread_mutexattr_settype() sets the mutex kind attribute in
attr to the value specified by second argument kind

● LinuxThreads supports only one mutex attribute, the mutex kind:
➔PTHREAD_MUTEX_FAST_NP for fast mutex
➔PTHREAD_MUTEX_RECURSIVE_NP for recursive mutex
➔PTHREAD_MUTEX_ERRORCHECK_NP for error checking mutex

Note: NP means, these are non-portable extension to POSIX standard

25Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Attributes of pthread_mutex_t
Proof of Concept

attr1.c, attr2.c

26Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Condition Variables

27Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Producer-Consumer Problem
● Producer produces information that is consumed by a consumer

process.To allow producer and consumer run concurrently we must
have a buffer that can be filled by the producer and emptied by the
consumer.The buffer can be bounded or unbounded

● Unbounded Buffer: Places no practical limit on the size of the buffer.
The consumer may have to wait for new items if the buffer is empty,
but the producer can always produce new items

● Bounded Buffer: Assumes a fixed size buffer. The consumer must
wait if the buffer is empty and the producer must wait if the buffer is
full

While an item is being added to or removed from the buffer, the buffer is
in an inconsistent state. Therefore, threads must have exclusive access to
the buffer. If a consumer thread arrives while the buffer is empty, it blocks
until a producer adds a new item

28Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Implicit Synchronization:
 $ grep prog1.c | wc –l

grep is a producer process and wc is a consumer process. grep writes
into the pipe and wc reads from the pipe. The required synchronization is
handled implicitly by the kernel. If producer gets ahead of the consumer
(i.e. the pipe fills up), the kernel puts the producer to sleep when it calls
write(), until more room is available in the pipe. If consumer gets
ahead of the producer (i.e. the pipe is empty), the kernel puts the
consumer to sleep when it calls read(), until some data is there in the
pipe

Explicit Synchronization:
When we as programmers are using some shared memory/data structure,
we use some form of IPC between the procedure and the consumer for
data transfer. We also need to ensure that some type of explicit
synchronization must be performed between the producer and consumer

Producer-Consumer Problem (cont...)

29

Process

Producer-Consumer Example

Producer Thread 0

Producer Thread 1

Producer Thread 2

Producer Thread 9

Store items

buff[0]

buff[1]

buff[2]

0

1

2

fetch items

Each producer thread obtains a mutex lock and
then accesses the buffer at the location pointed
to by in and places a number val at that location.

Instructor:Arif Butt

Punjab University College Of Information Technology (PUCIT)

Consumer Thread 0

Consumer Thread 1

Consumer Thread 2

Consumer Thread 9
1000buff[999]

Each consumer thread obtains a mutex lock and
then accesses the buffer at the location pointed to by
out and removes the number val from that location.

30Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

● Solution to such problems like the producer-consumer, reader-writer,
barber-shop and so on are condition variables

● A condition variable is a synchronization construct that allows threads
to suspend execution and relinquish the processors until some
condition is satisfied

● The two basic operations on condition variables are:
● signal(): Wake up a sleeping thread on this condition variable
● wait(): Release lock, goto sleep, reacquire lock after you are

awoken up
● So we can say that a condition variable enable a thread to sleep inside

a CS. Any lock held by the thread is automatically released when the
thread is put to sleep

● A mutex is for locking and a condition variable is for waiting

Condition Variables

31Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Producer Consumer with Condition Variables

Local Data

void placeitem()

void takeitem()

.

.

.

Condition variable full

Condition variable empty

Exit

Waiting Area

Entrance

wait()

signal()

signal()

wait()

With every condition variable there is an associated mutex variable. Whenever a thread
wants to invoke wait() or signal() operation, it must hold the mutex associated
with that condition variable

Producer Threads

Consumer Threads

3232

Initializing pthread_cond_t Variable
Static Initialization: In case where default attributes are appropriate, the
following macro can be used to initialize a pthread_cond_t variable

pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

Instructor:Arif Butt

Run time initialization: In all other cases, we must dynamically initialize
the condition variable using pthread_cond_init()

int pthread_cond_init(pthread_cond_t *cond,
pthread_condattr_t *attr);

Punjab University College Of Information Technology (PUCIT)

●This function initializes the condition variable object pointed to by cond
using the condition attributes specified in attr. If attr is NULL, default

attributes are used instead. LinuxThreads implementation supports no
attributes for conditions, hence the attr parameter is actually ignored

3333

● The pthread_cond_signal() restarts one of the threads that are waiting
on the condition variable cond. If no threads are waiting on cond, nothing
happens. If several threads are waiting on cond, exactly one is restarted,
but it is not specified which

● The thread that calls pthread_cond_wait() atomically unlocks its
second argument mutex and waits for the condition variable cond to be
signaled by suspending its execution

Instructor:Arif Butt

int pthread_cond_signal(pthread_cond_t *cond);
int pthread_cond_wait(pthread_cond_t *cond,

pthread_mutex_t *mutex);

Punjab University College Of Information Technology (PUCIT)

Operations on pthread_cond_t Variable

34Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

● Consider the buffer protected by mutex mut, and a condition variable
empty

● A call to pthread_cond_wait() should be done as part of a
conditional statement, e.g., the consumer thread will wait on condition
variable empty only when the buffer gets empty

● The producer thread will give a signal on condition variable empty, when it
places the first item in the buffer

● When the condition variable cond is signaled by a consumer thread,
pthread_cond_wait() will implicitly lock the mutex again before
returning. That is the reason the pthread_mutex_unlock() statement
is required after modifying the buffer by the producer thread

Example: wait() and signal()

pthread_mutex_lock(&mut);

//modify the buffer

if(buffercount == 1)

pthread_cond_signal(&empty);

pthread_mutex_unlock(&mut);

pthread_mutex_lock(&mut);

while(buffercount == 0)

pthread_cond_wait(&empty, &mut);

//modify the buffer

pthread_mutex_unlock(&mut);

Consumer Thread Producer Thread

35Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Solution to Producer Consumer Problem
Home Task

producer_consumer.c

36Punjab University College Of Information Technology (PUCIT)

Things To Do
Instructor:Arif Butt

I f y o u h a v e p r o b l e m s v i s i t m e i n c o u n s e l i n g h o u r s

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

