
1Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Lecture # 6.2
POSIX Semaphores

Course: Advance Operating System

Instructor: Arif Butt

Punjab University College of Information Technology (PUCIT)
University of the Punjab

Source Code files available at: https://bitbucket.org/arifpucit/spvl-repo/src
Lecture Slides available at: http://arifbutt.me

2Punjab University College Of Information Technology (PUCIT)

Today's Agenda
Instructor:Arif Butt

● Introduction to Semaphores

● Comparison between Mutex, Condition Variable and Semaphore

● Implementation of Semaphores

➔ POSIX Named Semaphores

➔ POSIX Un-Named Semaphores

● Solution to CSP among Threads

● Solution to CSP among Processes

● Solution to Serialization

● Use of semaphores as counting semaphores

● Barber Shop Problem

3Punjab University College Of Information Technology (PUCIT)

Introduction to Semaphores
Instructor:Arif Butt

● Semaphores are a kind of generalized locks first defined by
Dijkstra in late 1960s. A primitive used to provide
synchronization between various processes or between various
threads of a process. It can be considered as an integer variable,
with three differences:

➔ When you create a semaphore, you can initialize it to any
integer value, but after that you can perform two operations on
it, increment (verhogen, post, signal) and decrement (proberen,
wait)

➔ When a process/thread decrements the semaphore, if the
semaphore currently has the value zero, then the thread
blocks until the value of semaphore value rises above zero

➔ When a process/thread increments the semaphore, if there are
other threads waiting, one of the waiting threads gets
unblocked. Which one? (strong semaphore, weak semaphores)

4Punjab University College Of Information Technology (PUCIT)

Mutex, Condition Variable and Semaphore
Instructor:Arif Butt

● A mutex can have only two values 0 or 1, and is used to achieve
mutual exclusion, while semaphores can also be used as counting
semaphores in order to access a shared pool of resources

● A mutex must always be unlocked by the thread that locked the
mutex, whereas, a semaphore post need not be performed by the
same thread that did the semaphore wait

● When a condition variable is signaled, if no thread is waiting for
this condition variable, the signal is lost, while a semaphore post
is always remembered

● Out of various synchronization techniques, the only function that
can be called from a signal handler is semaphore post

Mutexes are optimized for locking, condition variables are optimized
for waiting, and a semaphore can do both

5Punjab University College Of Information Technology (PUCIT)

Implementations of POSIX Semaphores
Instructor:Arif Butt

Named
Semaphores

sem_open()

Unnamed /Memory Based
 Semaphores

sem_init()

sem_wait()

sem_trywait()

sem_post()

sem_getvalue()

sem_destroy()sem_close()

sem_unlink()

6Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Named Semaphores

7Punjab University College Of Information Technology (PUCIT)

Creating a Named Semaphore
Instructor:Arif Butt

User Space

Kernel Space

/dev/shm/sem.name1

P1 P2

8Punjab University College Of Information Technology (PUCIT)

Creating a Named Semaphore
Instructor:Arif Butt

● The sem_open() library call creates a new semaphore or opens an existing
semaphore identified by its first argument name of the form /somename; that is, a
null-terminated string of up to NAME_MAX-4 (i.e., 251) characters consisting of an
initial slash, followed by one or more characters, none of which are slashes

● The second argument oflag is mostly O_CREAT, in which case the semaphore is
created if it does not already exist. If both O_CREAT and O_EXCL are specified,
then an error is returned if a semaphore with the given name already exists

● If O_CREAT is specified in oflag, then two additional arguments must be supplied.
The mode argument specifies the permissions to be placed on the new semaphore.
The value argument specifies the initial value for the new semaphore. Binary
semaphores usually have an initial value of 1, whereas counting semaphores often
have an initial value greater than 1

● The return value is a pointer to sem_t datatype, which is then used as the argument to
sem_wait(), sem_post() and sem_close() calls

sem_t *sem_open(const char* name, int oflag);
sem_t *sem_open(const char *name, int oflag,
 mode_t mode, unsigned int value);

9Punjab University College Of Information Technology (PUCIT)

Incrementing and Decrementing Semaphores
Instructor:Arif Butt

● The sem_wait() library call decrements the semaphore pointed to by sem.
If the semaphore's value is greater than zero, then the decrement proceeds, and
the function returns, immediately. If the semaphore currently has the value
zero, then the call blocks until the value of semaphore value rises above zero

● The sem_post() library call increments the semaphore pointed to by sem.
If the semaphore's value becomes greater than zero, then another process or
thread blocked in a sem_wait() call will be woken up and proceed to lock
the semaphore

● On success both the functions returns 0. On error, the value of the semaphore is
left unchanged, a -1 is returned and errno is set to indicate the error

int sem_wait(sem_t *sem);
int sem_post(sem_t *sem);

10Punjab University College Of Information Technology (PUCIT)

Incrementing and Decrementing Semaphores
Instructor:Arif Butt

● The sem_trywait() library call is the same as sem_wait(), except that
if the decrement cannot be immediately performed, then the call returns an
error instead of blocking

● The sem_getvalue() library call places the current value of the semaphore
pointed to by sem into the integer pointed to by sval. POSIX permits two
possibilities for the value of sval less than zero:

● Either 0 is returned (Linux adopts this behavior)

● Or a negative number is returned showing the count of blocked threads

int sem_trywait(sem_t *sem);
int sem_getvalue(sem_t *sem, int* sval);

11Punjab University College Of Information Technology (PUCIT)

Closing and Removing a Named Semaphore
Instructor:Arif Butt

● A semaphore is automatically closed on process termination. A named
semaphore can be closed by using the sem_close() library call and passing
it the sem_t variable received via a previous sem_open() call

● Closing a named semaphore does not remove it from the system, as they are at
least kernel-persistent. They retain their value even if no process currently has
the semaphore open

● So to remove a named semaphore from the system we can use the
sem_unlink() call. A semaphore has a reference count of how many times
they are currently open. Removing of semaphore from filesystem occur when
the reference count becomes zero and also after the last process that has
opened the semaphore calls sem_close()

● On the shell on Linux, you can use the rm(1) command to delete the related
file in the /dev/shm/ directory

int sem_close(sem_t *sem);
int sem_unlink(const char *name);

12Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Named Semaphores
Handling CSP among Threads

race_threads.c, solrace_threads.c

13Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Named Semaphores
Handling CSP among Processes

race_processes.c, solrace_processes.c

14Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Named Semaphores
Serializing Threads

race_serialize.c, solrace_serialize.c

15Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Named Semaphores
Counting Semaphores

counting_sem.c

16Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Un-Named Semaphores

17Punjab University College Of Information Technology (PUCIT)

Creating a Un-Named Semaphore
Instructor:Arif Butt

P1 P2

Memory Based Semaphore Shared between two Threads

Memory Based Semaphore Shared between two Processes

Thread 1

Memory Based Semaphore Shared between two Threads

Thread 2

Semaphore

One Process

Semaphore

Shared Memory

18Punjab University College Of Information Technology (PUCIT)

Creating a Un-named Semaphore
Instructor:Arif Butt

● The sem_init() library call initializes the unnamed semaphore at
the address pointed to by its first argument sem with value mentioned as
third argument

● If pshared is zero, then semaphore is shared between the threads of a
process, and sem has to be global, so that it is accessible among all the
threads of a process

● If pshared is non-zero, then semaphore is shared between processes,
and sem has to be located in a region of shared memory

● After a successful call, the address of semaphore sem can be used as the
argument to sem_wait() and sem_post() calls by the processes or
threads

● Initializing a semaphore that has already been initialized results in
undefined behavior

int sem_init(sem_t *sem, int pshared, int value);

19Punjab University College Of Information Technology (PUCIT)

Destroying an Un-Named Semaphore
Instructor:Arif Butt

● The sem_destroy() call destroys the unnamed semaphore at the
address pointed to by sem. Only a semaphore that has been initialized by
sem_init() should be destroyed using sem_destroy()

● Destroying a semaphore that other processes or threads are currently
blocked on produces undefined behavior.

● Using a semaphore that has been destroyed produces undefined results,
until the semaphore has been reinitialized using sem_init()

● On success the call returns 0. On error a -1 is returned, and errno is set
to indicate the error

int sem_destroy(sem_t *sem);

20Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Un-Named Semaphores
Handling CSP among Threads

race_threads.c, solrace_threads.c

21Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Un-Named Semaphores
Handling CSP among Processes

race_processes.c, solrace_processes.c

22Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Un-Named Semaphores
Serializing Threads

race_serialize.c, solrace_serialize.c

23Punjab University College Of Information Technology (PUCIT)

Home Task: Barber Shop Problem
Instructor:Arif Butt

● A barber shop consists of one barber chair and
five waiting chairs

● If there are no customers to be served the barber
goes to sleep

● If a customer arrives and the barber is asleep, the
customer wakes up the barber, and the barber
cuts his hair. After the barber is done cutting the
hair of a customer, barber tells the customer to
leave

● If the barber is busy but chairs are available,
then the customer sits on one of the free chairs

● If a customer enters the barber shop and all the
chairs are occupied then the customer leaves the
shop

24Punjab University College Of Information Technology (PUCIT)

Things To Do
Instructor:Arif Butt

I f y o u h a v e p r o b l e m s v i s i t m e i n c o u n s e l i n g h o u r s

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

