
Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Lecture # 7.2
Socket Programming - I

Internet Domain TCP Sockets

Course: Advance Operating System

Instructor: Arif Butt

Punjab University College of Information Technology (PUCIT)
University of the Punjab

Source Code files available at: https://bitbucket.org/arifpucit/spvl-repo/src
Lecture Slides available at: http://arifbutt.me

2Punjab University College Of Information Technology (PUCIT)

Today's Agenda
Instructor:Arif Butt

● Client Server Paradigm
● What is a Socket?
● Types of Internet Socket (Stream, Datagram)
● What are TCP Sockets?
● System Call Graph for TCP Sockets
● BSD UNIX Socket API
● Writing a TCP echo Client
● Writing a TCP daytime Client
● Writing a TCP echo Server
● Look-up Functions
● Assignment: Writing your own Web Server

Internetworking with Linux:
https://www.youtube.com/playlist?list=PL7B2bn3G_wfD6_mhy-eLdn_mFgQ_mOyLl

3

Client Server Paradigm

Internet

Instructor:Arif Butt

Server
Machine

echo (7)
discard (9)
daytime (13)
chargen (19)
telnet (23)
time (37)

FTP (20/21)
SSH (22)
DNS (53)
HTTP (80/8080)
HTTPS (443)
DHCP (546/547)
NTP (123)
NFS (2049)

Client
Machine

nc
telnet
ssh
Web Browser

Stateful vs Stateless Short Connections
vs

Long Connections

Punjab University College Of Information Technology (PUCIT)

Iterative connectionless
Iterative connection-oriented
Concurrent connectionless
Concurrent connection oriented

4Punjab University College Of Information Technology (PUCIT)

What is a Socket?
Instructor:Arif Butt

● A socket is a communication end point to which an application can
write data (to be sent to the underlying network) and from which
an application can read data. The process/application can be
related or unrelated and may be executing on the same or different
machines

● From IPC point of view, a socket is a full-duplex IPC channel that may
be used for communication between related or unrelated processes
executing on the same or different machines. Both communicating
processes need to create a socket to handle their side of communication,
therefore, a socket is called an end point of communication

● Available APIs for socket communication are:
● For UNIX: socket and XTI / TLI

● For Apple Mac: MacTCP

● For MS Windows: Winsock

5Punjab University College Of Information Technology (PUCIT)

Types of Sockets
Instructor:Arif Butt

We will be discussing two types of sockets; the Internet
domain sockets and the UNIX domain sockets. Every
socket implementation provides at least two types of
sockets:

●TCP/Stream sockets (SOCK_STREAM)

●UDP/Datagram sockets (SOCK_DGRAM)

6Punjab University College Of Information Technology (PUCIT)

Stream Sockets / TCP Sockets
Instructor:Arif Butt

Stream sockets (SOCK_STREAM) provide a reliable, full-duplex,
stream-oriented communication channel. Stream sockets are used to
communicate between only two specific processes (point-to-point),
and are described as connection-oriented. Do not support
broadcasting and multicasting
● Full Duplex
● Stream Oriented
● Reliable
● Error detection using checksum
● Flow control using sliding window
● Congestion Control

➔ Sender-side congestion window
➔ Receiver-side advertised window

$ man 7 tcp
$ man 7 udp
$ man 7 ip

7Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

How Stream Sockets Work?
Behind the curtain

8Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Socket()

bind()

listen()

accept()

read()

write()

close()

socket()

connect()

write()

read()

close()

Connection Established
using 3-way Hand Shake

Data (Request)

Data (Response)

EOF Notification

Block until a connection
request arrives

System Call Graph: TCP Sockets

socket()

SERVER

CLIENT

9Punjab University College Of Information Technology (PUCIT)

Pictorial Representation of TCP Socket
Instructor:Arif Butt

Server
Client 1

Client 2

Connection operation

Send/Receive operation

10Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

SERVER

socket()
bind()
listen()
while(1) {

accept()
while(client writes) {

Read a request
Perform requested action
Send a reply

}
close client socket

}
close passive socket

CLIENT

socket()
connect()
while(x) {

write()
read()

}
close()

Pseudocode: TCP Sockets

11Punjab University College Of Information Technology (PUCIT)

TCP Three Way Hand Shake
Instructor:Arif Butt

connect()
socket()
bind()

listen()

accept()

accept return

Now reading and writing takes place between client socket and data socket on server side

[SYN J]

[SYN K, ACK J+1]

socket()

SYN_SENT state

SYN_RECEIVED state

ESTABLISHED stateESTABLISHED state

LISTEN state

[ACK K+1]

Server Client

12Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Server

[FIN M]

ACK [M+1]

close()

FIN-WAIT-1

LAST-ACK

ESTABLISHED state

CLOSE-WAIT

[ACK N+1]

ESTABLISHED state

Client

FIN-WAIT-2
FIN [N]

TIME-WAIT

CLOSED

TCP 4-way Connection Termination

CLOSED

.

.

.

Active close

Passive close

13Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Internet Domain TCP Sockets
Proof of Concept

strace, nc, netstat, wireshark, xinetd

1414

Lab Scenario

Virtual Box NW Adapter

Hostname: kali
OS: Kali Linux
IP:192.168.100.21

Hostname: ubuntuserver
OS: Ubuntu
IP:192.168.100.20

Instructor:Arif Butt

Hostname: win10
OS: MS Windows 10
IP:192.168.100.22

Hostname: Arifs-MacBook-Pro
OS: Mac OS High Sierra

IP:192.168.100.6

Home Router
IP:192.168.100.1

Punjab University College Of Information Technology (PUCIT)

15Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

BSD UNIX Socket API
For TCP Client

16Punjab University College Of Information Technology (PUCIT)

socket()
Instructor:Arif Butt

int socket(int domain, int type, int protocol);

● socket()creates an endpoint for communication
● On success, a file descriptor for the new socket is returned
● On failure, -1 is returned and errno is set appropriately
● The first argument domain specifies a communication domain under

which the communication between a pair of sockets will take place.
Communication may only take place between a pair of sockets of the same
type

● These families are defined in /usr/include/x86.../bits/socket.h

Domain Comm
Performed

Comm between
applications

Address format Address
structure

AF_UNIX Within kernel On same host pathname sockaddr_un

AF_INET Via IPv4 On hosts connected
via an IPv4 network

32-bt IPv4 addr +
16-bit port#

sockaddr_in

AF_INET6 Via IPv6 On hosts connected
via IPv6 network

128-bit IPv6 addr +
16-bit port#

sockaddr_in6

17Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

● The second argument type specifies the communication semantics.
These types are defined in the header file
/usr/include/x86.../bits/socket_type.h. Most common
types are SOCK_STREAM and SOCK_DGRAM

● The 3rd argument specifies the protocol to be used within the network
code inside the kernel, not the protocol between the client and server. Just
set this argument to “0” to have socket() choose the correct protocol
based on the type. You may use constants, like IPPROTO_TCP,
IPPROTO_UDP. You may use getprotobyname() function to get
the official protocol name (discussed later).You may look at
/etc/protocols file for details

● To view more details about these constants visit following man pages:
● $man 7 tcp, udp, raw, unix, ip, socket
● $man 5 protocols

socket()...
int socket(int domain, int type, int protocol);

18Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

socket()...

0

1

2

3

4

5

PPFDT

Family: AF_INET

Service: TCP

Local IP:

Local Port:

Remote IP:

Remote Port:

DS created by socket() call

● The socket data structure contains several pieces of information for the
expected style of IPC, including family/domain, service type, local IP, local
port, remote IP, and remote port

● UNIX kernel initializes the first two fields when a socket is created
● When the local address is stored in socket data structure we say that the

socket is half associated
● When both local and remote addresses are stored in socket data structure,

we say that socket is fully associated

int sockfd = socket(AF_INET, SOCK_STREAM, 0);

19Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

socket()...

0

1

2

3

4

5

PPFDT

Family: AF_INET

Service: TCP

Local IP:

Local Port:

Remote IP:

Remote Port:

DS created by socket() call

How addresses in socket data structure are populated
For Client
● Remote end point address is populated by connect()
● Local end point address is automatically populated by TCP/IP s/w when

client calls connect()

For Server
● Local end point addresses are populated by bind()
● Remote end point addresses are populated by accept()

int sockfd = socket(AF_INET, SOCK_STREAM, 0);

20

Instructor:Arif Butt

int connect(int sockfd, const struct sockaddr *svr_addr,
 int addrlen);
● The connect() system call connects the socket referred to by the

descriptor sockfd to the remote server (specified by svr_addr)
● If we haven't call bind(), (which we normally don't in client), it

automatically chooses a local end point address for you
● On success, zero is returned, and the sockfd is now a valid file descriptor

open for reading and writing. Data written into this file descriptor is sent to
the socket at the other end of the connection, and data written into the
other end may be read from this file descriptor

● TCP sockets may successfully connect only once. UDP sockets normally
do not use connect(), however, connected UDP sockets may use
connect() multiple times to change their association

● When used with SOCK_DGRAM type of socket, the connect() call
simply stores the address of the remote socket in the local socket's data
structure, and it may communicate with the other side using read() and
write() instead of using recvfrom() and sendto() calls

connect()

Punjab University College Of Information Technology (PUCIT)

21

Instructor:Arif Butt

connect() performs four tasks
● Ensure that the specified sockfd is valid and that it has not already

been connected
● Fills in the remote end point address in the (client) socket from the

second argument
● Automatically chooses a local end point address by calling TCP/IP

software
● Initiates a TCP connection (3 way handshake) and returns a value to

tell the caller whether the connection succeeded

connect()...

Punjab University College Of Information Technology (PUCIT)

Family: AF_INET

Service: TCP

Local IP:

Local Port:

Remote IP:

Remote Port:

0

1

2

3

4

5

22Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Socket Address Structures
Generic Socket Address structure: This is a basic template on which other address
data structures of different domains are based. When sa_family is AF_UNIX the sa_data
field is supposed to contain a pathname as the socket's address. When sa_family is
AF_INET the sa_data field contains both an IP address and a port number
struct sockaddr{
 u_short sa_family;
 char sa_data[14];
}

Internet Socket Address Structure:
struct sockaddr_in{
 u_short sin_family;
 u_short sin_port;
 struct in_addr sin_addr;
 char sin_zero[8];
}

UNIX Domain Socket Address Structure:
struct sockaddr_un{
 short sun_family;
 char sun_path;
}

struct in_addr{
 in_addr_t s_addr;
}

23Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Populating Address Structure
● Example: We normally need to populate the address structure and then

pass it to connect(). Following is the code snippet that do the task:

struct sockaddr_in svr_addr;

svr_addr.sin_family = AF_INET;

svr_addr.sin_port = htons(54154);

inet_aton(“127.0.0.1”, &svr_addr.sin_addr);

memset(&(svr_addr.sin_zero), '\0', sizeof(svr_addr.sin_zero))

connect(sockfd,(struct sockaddr*)&svr_addr,sizeof(svr_addr));

● Question: Why we need to cast the sockaddr_in to generic socket
address structure sockaddr?

● Answer: Address structures (of all families) need to be passed to bind(),
connect(), accept(), sendto(), recvfrom(). In 1982, there
was no concept of void*, so the designers defined a generic socket address
structure

24

Instructor:Arif Butt

● Byte order is the attribute of a processor that indicates whether integers
are represented from left to right or right to left in the memory

● In Little Endian Byte Order, the low-order byte of the number is
stored in memory at the lowest address and the high-order byte of the
same number is stored at the highest address

● In Big Endian Byte Order, the low-order byte of the number is stored
in memory at the highest address and the high-order byte of the same
number is stored at the lowest address

Little Endian vs Big Endian

00000000 00000000 00000000 00000001

0x20030x20020x20010x2000

00000001 00000000 00000000 00000000

Punjab University College Of Information Technology (PUCIT)

short int var = 0x0001;
char *byte = (char*)&var;
if (byte[0] == 1)

printf(“Little Endian”);
else

printf(“Big Endian”);

25

Instructor:Arif Butt

uint16_t htons(uint16_t host16bitvalue);
uint16_t htonl(uint32_t host32bitvalue);

Returns: value of arg passed is converted to NBO
uint16_t ntohs(uint16_t net16bitvalue);
uint16_t htons(uint32_t net32bitvalue);

Returns: value of arg passed is converted to HBO

● The API htons() is used to convert a 16-bits data from host byte order to
network byte order such as TCP or UDP port number

● The API htonl() is used to convert a 32-bits data from host byte order to
network byte order such as IPv4 address

● The API ntohs() is used to convert a 16-bits data from network byte order
to host byte order such as TCP or UDP port number

● The API ntohl() is used to convert a 32-bits data from network byte order
to host byte order such as IPv4 address

Byte Order and ByteOrdering Functions

Punjab University College Of Information Technology (PUCIT)

26

Instructor:Arif Butt

in_addr_t inet_addr(const char* str);
int inet_aton(const char* str,struct in_addr *addr)

● Both of these functions are used to convert the IPv4 internet address
from dotted decimal C string format pointed to by str to 32-bit binary
network byte ordered value

● The inet_addr() return this value, while inet_aton() function
stores it through the pointer addr

● The newer function inet_aton() works with both IPv4 and IPv6,
so one should use this call in the code even if working on IPv4

Address Format Conversion Functions

Punjab University College Of Information Technology (PUCIT)

27Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

ssize_t read(int fd, void* buf, size_t count);
ssize_t write(int fd, const void* buf, size_t count);

● The read() and write() system calls can be used to read/write from
files, devices, sockets, etc. (with any type of sockets stream or datagram)

● The read() call attempts to read up to count bytes from file descriptor
fd into the buffer starting at buf. If no data is available read blocks. On
success returns the number of bytes read and on error returns -1 with
errno set appropriately

● The write() call writes count number of bytes starting from memory
location pointed to by buf, to file descriptor fd. On success returns the
number of bytes actually written and on error returns -1 with errno set
appropriately

● The send() and recv() calls can be used for communicating over
stream sockets or connected datagram sockets. If you want to use regular
unconnected datagram sockets (UDP), you need to use the sendto() and
recvfrom()

read() and write()

28Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

int send(int sockfd, const void* buf, int count,int flags);

● The send() call writes the count number of bytes starting from
memory location pointed to by buf, to file descriptor sockfd

● The argument flags is normally set to zero, if you want it to be
“normal” data. You can set flag as MSG_OOB to send your data as “out
of band”. Its a way to tell the receiving system that this data has a
higher priority than the normal data. The receiver will receive the signal
SIGURG and in the handler it can then receive this data without first
receiving all the rest of the normal data in the queue

● The send()call returns the number of bytes actually sent out and this
might be less than the number you told it to send. If the value returned
by send() does not match the value in count, it's up to you to send
the rest of the string

● If the socket has been closed by any side, the process calling send()
will get a SIGPIPE signal

send()

29Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

int recv(int sockfd, void* buf, int count, int flags);

● The recv() call attempts to read up to count bytes from file descriptor
sockfd into the buffer starting at buf. If no data is available it blocks

● The argument flags is normally set to zero, if you want it to be a
regular vanilla recv(), you can set flag as MSG_OOB to receive out
of band data. This is how to get data that has been sent to you with the
MSG_OOB flag in send() As the receiving side, you will have had
signal SIGURG raised telling you there is urgent data. In your handler
for that signal, you could call recv() with this MSG_OOB flag

● The call returns the number of bytes actually read into the buffer, or -1
on error

● If recv() returns 0, this can mean only one thing, i.e., remote side
has closed the connection on you

recv()

30Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

char msg[128];

int n, nread, nremaining;

for(n=0, nread=0; nread < 128; nread += n){

 nremaining = 128 – nread;

 n = read(sockfd, &msg[nread], nremaining);

 if (n == -1) {perror(“read failed”); exit(1);}

 }

printf(“%s\n”,msg);

● The data from a TCP socket should always be read in a loop until the
desired amount of data has been received

● A sample code snippet that do this job is shown:

Reading in a Loop

31

Instructor:Arif Butt

int close(int fd);

● After a process is done using the socket, it can call close() to close
it, and it will be freed up, never to be used again by that process

● On success returns zero, or -1 on error and errno will be set
accordingly

● The remote side can tell if this happens in one of two ways:
● If the remote side calls read(), it will return zero
● If the remote side calls write(), it will receive a signal SIGPIPE

and write() will return -1 and errno is set to EPIPE
● In practice, Linux implements a reference count mechanism to allow

multiple processes to share a socket. If n processes share a socket, the
reference count will be n. close() decrements the reference count
each time a process calls it. Once the reference count reaches zero (i.e.,
all processes have called close()) the socket will be deallocated

close()

Punjab University College Of Information Technology (PUCIT)

32

Instructor:Arif Butt

int shutdown(int fd, int how);
● When you close a socket descriptor, it closes both sides of the socket for

reading and writing, and frees the socket descriptor. If you just want to close
one side or the other, you can use shutdown() call

● The argument fd is descriptor of the socket you want to perform this action
on, and the action can be specified with the how parameter

● SHUT-RD(0): Further receives are disallowed
● SHUT-WR(1): Further sends are disallowed
● SHUT-RDWR(2): Further sends and receives are disallowed

Difference between close() and shutdown():
● close() closes the socket ID and frees the descriptor for the calling

process only, the connection is still opened if another process shares this
socket ID. The connection stays opened for both read and write

● shutdown() breaks the connection for all processes sharing the socket ID.
It doesn't close the file descriptor or free the socket DS, it just change its
usability. To free a socket descriptor, you still have to call close()

shutdown()

Punjab University College Of Information Technology (PUCIT)

33Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Internet Domain TCP Sockets
Proof of Concept
tcpechoclient.c

34Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Internet Domain TCP Sockets
Proof of Concept
tcpdaytimeclient.c

35Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

BSD UNIX Socket API
For TCP Server

36Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

int bind(int sockfd, struct sockaddr* myaddr, int addrlen)

● A socket created by a server process must be bound to an address and
it must be advertised. Thus any client process can later contact the
server using this address

● The bind() call assigns the address given in the 2nd argument
myaddr, to the socket referred to by the sockfd given in the 1st
argument (obtained from a previous socket() call)

● The 2nd argument, myaddr is a pointer to a structure specifying the
address to which this socket is to be bound. There are different
address families and each having its own format. The type of
structure passed in this argument depends on the socket domain

● The addrlen argument specifies the size in bytes of the address
structure pointed to by myaddr

● On success, the call returns zero. On failure -1 is returned and
errno is set appropriately

bind()

37Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

int listen(int sockfd, int backlog);

● The listen() system call requests the kernel to allow the specified
socket mentioned in the 1st argument to receive incoming calls. (Not all
types of sockets can receive incoming calls, SOCK_STREAM can)

● This call put a socket in passive mode and associate a queue where
incoming connection requests may be placed if the server is busy
accommodating a previous request

● The backlog argument is the number of connections allowed on the
incoming queue. The maximum queue size depends on the socket
implementation

● On success it returns zero and on failure -1 is returned and errno is set
appropriately

● We need to call bind() before we call listen(), otherwise the kernel
will have us listening on a random port

listen()

38Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

int accept(int sockfd, struct sockaddr* callerid,
 socklen_t *addrlen);

● The accept() system call is used by server process and returns a new
socket descriptor to use for a new client. After this the server process has
two socket descriptors; the original one (master socket) is still listening
on the port and new one (slave socket) is ready to be read and written

● It is used with connection-based socket types (SOCK_STREAM)
● The argument sockfd is a socket that has been created with
socket(), bound to a local address with bind(), and is listening for
connections

● On success, the kernel puts the address of the client into the second
argument pointed to by callerid and puts the length of that address
structure into the third argument pointed to by addrlen

● On success return a non-negative integer that is a descriptor for the
accepted socket. On failure -1 is returned and errno is set appropriately

accept()

39Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Internet Domain TCP Sockets
Proof of Concept
tcpechoserver.c

40Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

BSD UNIX Socket API
lookup() Functions

41Punjab University College Of Information Technology (PUCIT)

Looking up FQDN
Instructor:Arif Butt

struct hostent *gethostbyname(const char *name);
● To connect to a server, the client has to specify the server's IP address.

Suppose, instead of dotted decimal notation string, we have the domain
like “pucit.com”, then converting the domain name into 32-bit IP address
requires the use of above API. (/etc/hosts)

● gethostbyname() takes an ASCII string that contains the domain
name for a machine and returns pointer to a hostent structure that
contains the host's IP address and other details

 struct hostent {
 char *h_name; /* official name of host */
 char **h_aliases; /* alias list */
 int h_addrtype; /* host address type */
 int h_length; /* length of address */
 char **h_addr_list; /* list of addresses, first address is in h_addr */
 };
 #define h_addr h_addr_list[0]
● On Failure, returns a NULL pointer and h_errno variable holds an error

number

42Punjab University College Of Information Technology (PUCIT)

Looking up a Well Known Port by name
Instructor:Arif Butt

struct servent *getservbyname(const char *svc,
 const char* protocol);

● Some times the client application need to know the port number for a
specific service it wish to invoke

● getservbyname() takes two arguments, an ASCII string that
specifies the desired service and a string that specifies the protocol being
used. It returns a pointer to servent structure from the file
/etc/services that matches the service name (1st argument). If 2nd
argument is null, any protocol is matched

● On success, it returns a pointer to a statically allocated servent
structure

 struct servent {
 char *s_name; /* official service name */
 char **s_aliases; /* alias list */
 int s_port; /* port for this service from /etc/services file */
 char* s_proto; /* protocol to use */
 };

43Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Assignment:
TCP Web Server

44

Architecture of Web Application
Instructor:Arif Butt

Web
Server

Apache
IIS
Ngnix
Lighttpd
Jigsaw
OiWS

Client
Machine

Google Chrome
Mozilla Firefox
Safari
MS Internet Explorer
Opera
Spartan

Punjab University College Of Information Technology (PUCIT)

Web Browsers

HTTP Request

HTTP Response

Static Data Request

Static Data Response

Storage for
Static Web Pages

Web Servers

Application
Server

CGI
PHP
Servlets
JSP
Python
Ruby
Node.js

MySQL
MariaDB
MS SQL
Mongo DB
Oracle
Informix
Teradata

Dynamic Data Request

Dynamic Data Response DB

Address: protocol://hostname[:port]/pathtoresource

HTML, XML, CSS
Ajax, JSON

45

Instructor:Arif Butt

HTTP Request / Response Message

Method URLsp Versionsp crlf

Header Name Value:sp crlf

Header Name Value:sp crlf

crlf

Optional Body

Punjab University College Of Information Technology (PUCIT)

HTTP Request Message

- - -
- - -

Version Status Codesp Descrsp crlf

Header Name Value:sp crlf

Header Name Value:sp crlf

crlf

Optional Body

HTTP Response Message

- - -
- - -

Client sends request
GET / HTTP/1.1
Host: www.arifbutt.me
User-Agent: curl/7.56.1

Server sends reply
HTTP/1.1 200 OK
Date: Sun, 20 May 2018 18:18:23 GMT
Server: Apache
Content-Type: text/html; charset=UTF-8

Body

Methods: GET, HEAD, PUT, POST,
TRACE, DELETE, OPTIONS

Status Codes: 1xx, 2xx, 3xx, 4xx, 5xx

46Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

A web server is a program that allows users on other computers to
list directories (ls), read files (cat) and run programs(exec). The
operations we need to code for a basic web server are:
● Set up the server: We know how to create a socket, put it in

listen mode and then accept a call
● Read a request: What does a http request look like? How does

the client ask for something?
● Handle the request: We know how to list directories, cat files,

and run programs by using opendir, readdir, open, read,
dup2 and exec

● Send a reply: What does a reply look like? What does the client
expect to see?

Assignment: A Basic Web Server

4747

Instructor:Arif Butt

Assignment: A Basic Web Server (cont...)

Server
1. Accept a call
2. Read a request
3. Process request

 directory: list it
 regular file: cat it
 .cgi file: run it

 not exist: error message
4. Write a reply

Client
1. User selects a link
2. Connect to server
3. Write a request

4. Read the reply
5. Hangup
6. Display the reply

 html: render it
 image: draw it
 sound: play it

7. Repeat

Punjab University College Of Information Technology (PUCIT)

48Punjab University College Of Information Technology (PUCIT)

Things To Do
Instructor:Arif Butt

I f y o u h a v e p r o b l e m s v i s i t m e i n c o u n s e l i n g h o u r s

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

