
1Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Lecture # 8.1
Exploiting Buffer Overflow Vulnerability

Part-I

Course: Advance Operating System

Instructor: Arif Butt

Punjab University College of Information Technology (PUCIT)
University of the Punjab

Source Code files available at: https://bitbucket.org/arifpucit/spvl-repo/src
Lecture Slides available at: http://arifbutt.me

2Punjab University College Of Information Technology (PUCIT)

Today's Agenda
Instructor:Arif Butt

● What is Buffer Overflow?

● A simple stack buffer overflow example

● How a stack based buffer overflow is exploited?

● Exploit mitigation techniques

● Recap: x86-64 Architecture

● Recap: x86-64 Assembly

● Function Calling Convention x86-64

● Proof of Concepts

● Installing and using PEDA (a gdb plugin)

● Changing control of flow of execution of a program

3Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

● Cyber-security encompasses all the techniques for protecting
computers, networks, programs, and data from unauthorized access or
attacks that are aimed for exploitation

● A vulnerability is a flaw/weakness in a system design, implementation
or security procedure that could be exploited resulting in notable
damage. Example is a house with a weak lock on the main door. A zero-
day vulnerability is a vulnerability that has been disclosed but is not yet
patched. An exploit that attacks a zero-day vulnerability is called a zero-
day exploit

● An exploit is a software that take advantage of a vulnerability leading to
privilege escalation on the target. Example of an exploit is the duplicate
key with the robber using which he/she can enter the house

● A payload is actual code which runs on the compromised system after
exploitation. Example is the task that the robber will perform inside the
house, i.e., stealing jewelry and cash

Cyber-Security and Vulnerabilities

4Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

This is a brief list of types of vulnerabilities that compromise integrity, availability and
confidentiality

● Buffer overflow
● Missing data encryption
● OS command injection
● SQL injection
● Missing authentication for critical function
● Missing authorization
● Unrestricted upload of dangerous file types
● Reliance on untrusted inputs in a security decision
● Cross-site scripting and forgery
● Download of codes without integrity checks
● Use of broken algorithms
● URL redirection to untrusted sites
● Path traversal
● Weak passwords
● Software that is already infected with virus

List of Common S/W Security Vulnerabilities

The list grows larger every year as new ways to steal and corrupt data are discovered

The vulnerability we are going to talk about today is Buffer Overflow

5Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Buffer Overflow Example

stackoverflow.c

6Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

● A buffer overflow is a bug in a program, which occurs when more data is
written to a block of memory than it can handle. This can be stack based, heap
based, integer overflow, off-by-one, and a format string

● The first published paper on this vulnerability was published in 1996 by Aleph
One with the title of “Smashing The Stack For Fun And Profit”, and later
revived by Avicoder in 2017. (Both are a must read)

● Buffer overflow exploit was first used by Morris Worm (sendmail) in 1988,
followed by Code Red Worm (IIS web server) in 2001 and Slammer worm (dos
attk) in 2003. It is still one of the top vulnerability which cover a wide range of
computer applications, libraries, operating systems and networking

● Hackers mostly use buffer overflows to corrupt the execution stack of a web
app. By transferring fully crafted input to a web app, a hacker can make the
web app to execute arbitrary code and probably taking over the server

● Although there are many h/w and s/w based techniques and tools that have
been proposed and developed to detect and protect from buffer overflow
vulnerability, but based on the trend it look likes this problem will continue to
happen

Introduction to Buffer Overflow

https://www.eecs.umich.edu/courses/eecs588/static/stack_smashing.pdf
https://avicoder.me/papers/pdf/smashthestack.pdf

https://www.eecs.umich.edu/courses/eecs588/static/stack_smashing.pdf
https://avicoder.me/papers/pdf/smashthestack.pdf

7Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Stack Based Buffer Overflow

...

Return Address

Buffer ends here

Buffer grows
towards higher
addresses

Stack grows
towards smaller
addresses

Low address

Hi address

AAAAAAAA

AAAAAAAA

AAAAAAAA

AAAAAAAA

AAAAAAAA

AAAAAAAA

Alignment Space

Caller's RBP

Return Address RIP

Function Parameters

AAAAAAAA

AAAAAAAA

AAAAAAAA

int f1(){
 char buff[48];
 gets(buff);
 printf("%s\n", buff);
 return 0;
}
int main(){
 int rv = f1();
 exit(0);
}

Buffer starts here

AAAAAAAA

8Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Stack Based Buffer Overflow Exploit
...

Shell Code

Low address

Hi address

AAAAAAAA

Function Parameters

AAAAAAAA

AAAAAAAA

Addr to Shell Code

\x31\xc0\x48\xbb
\xd1\x9d\x96\x91
\xd0\x8c\x97\xff
\x48\xf7\xdb\x53
\x54\x5f\x99\x52

Security Protection Mechanisms:
● NX bit
gcc -z execstack prog.c

● Stack Canary
gcc -fno-stack-protector prog.c

● ASLR
echo 0 | sudo tee /proc/sys/kernel/

randomize_va_space

● PIE
gcc -no-pie prog.c

● FORTIFY_SOURCE
gcc -D_FORTIFY_SOURCE -O2 prog.c

Return Address

However, none of these exploit mitigation techniques is completely foolproof,
and can be bypassed by using a bit of intelligence

9Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

RECAP
Architecture and Assembly of

x86-64

10Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

There are sixteen 64 bit general purpose
registers (GPRs) and we can access their lower
32, 16 as well as 8 bits. In assembly programs
we use these registers as variables
● rsp: is the stack pointer and is used to point

to the current top of the stack. Whether it
point to the last allocated address on the stack
or to the next free address, is implementation
dependent. It should not be used for data or
other uses

● rbp: is the base/frame pointer and always
points to a fixed location within a frame. All
the local variables and parameters within a
frame are referenced by giving their offset
from rbp. It should not be used for data or
other uses

● rip: is the instruction pointer that stores the
address of the next instruction to be executed

64 bit 32 bit 16 bit 8 bit

rax eax ax al

rbx ebx bx bl

rcx ecx cx cl

rdx edx dx dl

rsi esi si sil

rdi edi di dil

rbp ebp bp bpl

rsp esp sp spl

r8 r8d r8w r8b

r9 r9d r9w r9b

r10 r10d r10w r10b

r11 r11d r11w r11b

r12 r12d r12w r12b

r13 r13d r13w r13b

r14 r14d r14w r14b

r15 r15d r15w r15b

General Purpose Registers

11Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

● There are 6 x 16 bit segment registers (CS, DS, SS, ES, FS, GS), each
holding a 16 bit segment selector. The four segment registers (CS, DS, SS,
ES) are the same as found in Intel 8086, while FS and GS were introduced
in IA-32

● Each of the segment registers is associated with one of the three types of
storage: code, data or stack

● CS register contain the segment selector for the code segment, where the
instructions being executed are stored. So the rip register contains the offset
within the code segment of the next instruction to be executed

● SS register contain the segment selector for the stack segment containing
the function stack frames or activation records

● The DS, ES, FS, and GS registers points to the four data segments. The
availability of four data segments permits efficient and secure access to
different types of data structures. For example, four separate data segments
might be created: one for the data structures of the current module, another
for the data exported from a higher-level module, a third for a dynamically
created data structure, and a fourth for data shared with another program

Code Segment Registers

12Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

The rflags register is used for status and CPU control information. It is
updated by the CPU after each instruction is executed. Out of the 64 bits mostly
are unused and reserved for future use. Some important flags are mentioned
below:
● Status Flags

➔ Carry flag (CF). Bit 0 is set if the previous operation resulted in a carry or a borrow out of the msb of result
➔ Parity flag (PF). Bit 2 is set if the LSB of the result contains an even number of 1s
➔ Auxiliary flag (AF). Bit 4 is set if an arithmetic op generates a carry or a borrow out of bit 3 of result (BCD)
➔ Zero flag (ZF). Bit 6 is set if the previous operation resulted in a zero result
➔ Sign flag (SF). Bit 7 is set equal to the msb of the result, which is the sign bit of a signed integer
➔ Overflow flag (OF). Bit 11 is set if the previous operation resulted in an overflow

● Control Flags
➔ Direction flag (DF). Bit 10 is used to specify direction (inc or dec) for string operations

● System Flags
➔ Interrupt enable flag (IF). Bit 9 is set to respond to maskable interrupts
➔ Trap flag (TF). Bit 8 is set to enable single step mode for debugging
➔ Resume flag (RF). Bit 16 is used to control the cpu response to debug exceptions

1 1 1 0 1 0 1 1 0 0 0 1 1 0 0 1 1 0 0 1 0 0 0 1 1 0 0 0 1 0 1 0rflags

Flags Register

13

Instructor:Arif Butt

● Byte order is the attribute of a processor that indicates whether integers
are represented from left to right or right to left in the memory

● In Little Endian Byte Order, the low-order byte of the number is
stored in memory at the lowest address and the high-order byte of the
same number is stored at the highest address. The figure shows how a
decimal number one is store in 4 bytes in Little Endian scheme

● In Big Endian Byte Order, the low-order byte of the number is stored
in memory at the highest address and the high-order byte of the same
number is stored at the lowest address. The figure shows how a decimal
number one is store in 4 bytes in Big Endian scheme

IA-64 is Little Endian

Punjab University College Of Information Technology (PUCIT)

00000001 00000000 00000000 00000000

0x20030x20020x20010x2000

00000000 00000000 00000000 00000001

0x20030x20020x20010x2000

14Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Summary of Basic Assembly Instructions
Instr Category Meaning Example

Data transfer Move from source to
destination

mov, lea, lds, les, push, pop, pushf,
popf

Arithmetic Arithmetic on integers add, addc, sub, subb, mul, imul, div,
idiv, cmp, neg, inc, dec, xadd, cmpxchg

Floating point Arithmetic on floating pt fadd, fsub, fmul, fdiv

Shift, Rotate Bit wise logic operations and, or, xor, not, shl/sal, shr, sar,
ror, rol, rcr, rcl

Control transfer Conditional and
unconditional jumps, and
procedure calls

jz, jnz, jo, jno, jp, jnp...
jmp
call, ret

String Move, compare, input
and output

movs, lods, stos, scas, cmps, outs,
rep, repz, repe, repnz, repne, ins

I/O For input and output in, out

Conversion Assembly data type
conversions

movzs, movsx, cbw, cwd, cwde, cdq,
bswap, xlat

Miscellaneous Manipulate individual
flags

clc, stc, cmc, cld, std, cl, sti

15Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Machine, Assembly and Hi Level Languages
Language Example

High Level
Language

#include <stdio.h>
#include <stdlib.h>
int main(){
 printf("Learning is fun with Arif\n");
 exit(0);
}

Assembly
Language

0x0...468a <+0> : push rbp
0x0...468b <+1> : mov rbp, rsp
0x0...468e <+4> : lea rdi, [rip+0x9f]
0x0...4695 <+11>: call 0x555555554550 <puts@plt>
0x0...469a <+16>: mov edi, 0x0
0x0...469f <+21>: call 0x555555554560 <exit@plt>

Machine
Language

0: 55
1: 48 89 e5
4: 48 8d 3d 00 00 00 00
b: e8 00 00 00 00
10: bf 00 00 00 00
15: e8 00 00 00 00

16Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

C vs Assembly vs Machine Language
Proof of Concept
prog1.c – prog3.c

prog4.nasm, prog5.nasm

17Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

x86-64
Function Calling Convention

18Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

● The diagram shows the logical process address space of a
process

● Code section contains machine code instructions of your
program

● Above code section we have initialized and uninitialized
data sections for global variables

● Heap is used for dynamic memory allocation and it grows
towards higher addresses

● The stack is at the top of memory below the kernel code
and grows from higher memory addresses to lower
memory addresses in architectures like Intel, MIPS,
Motorola, SPARC

● All the push/pop on the stack are 8 Bytes wide on x86_64
● Whenever a function is called, a new function stack frame

or activation record is created

Logical Layout of a Process Address Space
OS Kernel

Stack

Shared Objects

Heap

Uninitialized DS

Initialized DS

Code Section

0x00000000

0x7fffffffffff

19Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

● A function stack frame or activation record is pushed/created on the stack
when a function is called and popped/removed from the stack when a
function returns. Function calling convention means:

➔ How the function arguments are passed?
➔ In which order the function arguments are passed?
➔ Who is responsible for creating the FSF?
➔ Who is responsible for unwinding the FSF?

● On x86_64, the first six integer or pointer arguments are passed via registers
(rdi, rsi, rdx, rcx, r8, r9). Any floating point values are
passed in xmm0, xmm1, xmm2, …. The seventh argument onwards are
passed via stack in reverse order. The function return value is placed in
register rax

● On x86_64, the FSF is created by callee using procedure prolog
● On x86_64, the FSF is unwinded by the callee using procedure epilog

Function Calling Convention

20Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Creation of FSF on Stack
Suppose the main() (caller) calls another function
f1()(callee). Before the control goes to function
f1(), the code inside main() performs following
two tasks:

● Places the function arguments in six registers
(rdi, rsi, rdx, rcx, r8, r9) and the
rest (if any) are pushed on the stack in reverse
order

● The contents of rip (return address) is also
pushed on the stack

Then the control shifts to the called function (callee)
f1(), which perform a procedure prolog:
PUSH rbp
MOV rbp, rsp
SUB rsp, 0X20

Hi address
rbp

rsp

FSF of

main()

Low address

Function
arguments

Function
Return address

(rip)

rbp
(Function pointer

of main)

rbp

rsp

Local
variables of

f1()

Stack grows
to lower
addresses

21Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Removal of FSF from Stack
Hi address

rbp

rsp

FSF of

main()

Low address

Function
arguments

Function
Return address

(rip)

rbp
(Function pointer

of main)

rbp

rsp

Local
variables of

f1()

Stack grows
to lower
addresses

After the function f1() is done with its execution, it
finally calls the return statement to return the
control to the main() function, and clean up its
function stack. We say it performs procedure epilog:

LEAVE
RET

MOV rsp, rbp
POP rbp

POP rip

22Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Function Stack Frame on x86-64
...

h

g

Return Address

Caller's RBP

Allignment Space

Allignment Space

Buffer starts here

Buffer ends here

Buffer grows
towards higher
addresses Stack grows

towards smaller
addresses

Low address

Hi address

int f1(long a, long b, long c, long d,
 long e, long f, long g, long h)
{

char buff[48];
gets(buff);
return 1;

}

a

b

c

d

e

f

RDI:

RSI:

RDX:

RCX:

R8:

R9:

23Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

There is a long list of debugging and reverse engineering tools that can be
used to debug, decompile, disassemble and analyzing binaries like hopper,
edb, IDA Pro, Radare2
● GNU Debugger (GDB) is a portable debugger that runs on many UNIX-

like systems and works for many programming languages, including Ada,
C, C++, Objective-C, Java, Fortran, Pascal, Go, and many others. The target
processors include IA-32, x86-64, alpha, arm, mips, powerpc, sparc and
many others. It offers a command line interface, but several front ends have
been built for it like Data Display Debugger (DDD), Xcode debugger. IDEs
like Visual Studio, NetBeans, Eclipse, Code::Blocks, Dev-C++, and Geany
can interface with gdb. Too good a debugger, however, it lacks intuitive
interface, do not have a smart context display, do not have commands for
exploit development, and has weak scripting support

● PEDA: Python Exploit Development Assistance is a plugin for GDB used
extensively in exploit development. It is supported by gdb 7.x and
Python2.6+

Common Debuggers / Code Analyzers

24Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Function Calling Convention
Proof of Concept
func_calling.c

Link for gdb:
https://www.youtube.com/watch?v=7D3R65Vm3B8&t=0s&list=PL7B2bn3G_wfD8xy4lUaoItwwJ3zKlpuUe&index=3

Download and install PEDA:
$ mkdir ~/peda
$ git clone https://bitbucket.org/arifpucit/peda.git ~/peda/
$ echo “source ~/peda/peda.py” >> ~/.gdbinit

https://bitbucket.org/arifpucit/peda.git

25Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Modify the Return Address
stackoverflow.c

26Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Modifying the Function Return Address

FSF main()

FSF f1()

FSF f2()

FSF f3()
Stack grows
towards smaller
addresses

Low address

Hi address

void f3(){ return;}
void f2(){ f3(); }
void f1(){ f2(); }
int main(){
 f1();
 return 0;
}
int virus(){
 printf("Let us Hack planet earth with

Arif Butt.\n");
 exit(0);
}

27Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Changing Control of Flow
Proof of Concept

virus.c

28Punjab University College Of Information Technology (PUCIT)

Things To Do
Instructor:Arif Butt

I f y o u h a v e p r o b l e m s v i s i t m e i n c o u n s e l i n g h o u r s

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

