Computer Organization \& Assembly Language Programming

Data Storage - I

```
#include<stdio.h>
#include<stdlib.h>
int main(){
    printf("Learning is fun with Arif\n");
    exit(0);
```


Today's Agenda

- Data Representation in Computers
- Unsigned Numbers
- Signed Numbers
- Sign magnitude representation \& its limitations
- 1s Complement representation \& its limitations
- 2s Complement
- Comparisons and pros and cons of each
- Ranges and different Storage Sizes
- Overflow in Unsigned \& Signed Numbers
- How the Hardware Detect an Overflow
- Concept of Sign Extension
- Encoding Characters and Strings (ASCII \& Unicode)

Different Types of Numbers

- Natural Numbers (N): Set of positive numbers
- Whole Numbers (W): Set of zero and positive natural numbers
- Integers (Z): Set of zero, positive natural numbers and their additive inverses. An integer is a number that can be written without a fractional component
- Real Numbers (R): A continuous quantity that can represent a distance along a line (They are called real because they are not imaginary)
- Imaginary Numbers are numbers that when squared gives use a negative number, e.g., sqrt(-1)
- Rational numbers (Q): are numbers that can be expressed as ratio of two integers, e.g., $\frac{1}{2}$ and $\frac{2}{4}$ are two fractions that represent the same rational number 0.5
- Irrational Numbers (\mathbf{Q}^{\prime}): are numbers that cannot be expressed as ratio of two integers, e.g., 3.141592653589793238462 which is not exactly equal to $\frac{22}{7}$

Note:

- Most of the programming languages provide support for storing and manipulating rational numbers
- In Computers irrational numbers cannot be fully and accurately represented/manipulated

Unsigned Numbers

Unsigned Numbers

Base 10 number representation (Decimal)

$$
521_{10}=5 \times 10^{2}+2 \times 10^{1}+1 \times 10^{0}=521_{10}
$$

Base 2 Number Representation (Binary)

$10112_{2}=1 \times 2^{3}+0 \times 2^{2}+1 \times 2^{1}+1 \times 2^{0}=111_{0}$	4	5	5	0101
	6	6	5	0110
Base 16 Number Representation (Hexadecimal ${ }_{8}^{7}$		7	7	0111
		8	10	1000
$9 \mathrm{E}_{16}=10011110_{2}$	9	9	11	1001
	10	A	12	1010
	11	B	13	1011
Base 8 Number Representation (Octal)	12	C	14	1100
$468=100110_{2}$	13	D	15	1101
	14	E	16	1110
Students should know how to convert a number from one base to a aother	15	F	17	1111

Note: These all are weighted and positional number systems, with each bit having a weight depending on its position

Encoding Signed Numbers

Encoding Signed Numbers

- Theoretically there are three ways to encode the signed numbers:
$>$ Sign Magnitude Encoding
$>$ 1's Complement Encoding
> 2's Complement Encoding

- Unsigned byte range can be represented using a number line as below:

- Signed byte range can be represented using a number line as below:

Sign Magnitude Encoding

How to Encode a Negative Number:

- The most natural way of encoding a signed number is
- MSb is reserved to represent/encode the sign. 0 for positive and 1 for negative and the remaining bits represents the magnitude
- The four bits representations of signed numbers using sign magnitude encoding is shown in the table 0001

0	0000
-0	1000

-1	1001
-2	1010
-3	1011
-4	1100
-5	1101
-6	1110
-7	1111

Sign Magnitude Encoding (cont...)

Limitations:

- Two different encodings for zeros (positive \& negative)

Decimal	Binary Bits
7	0111
6	0110
5	0101
4	0100
3	0011
2	0010
1	0001
0	0000
-0	1000
-1	1001
-2	1010
-3	1011
-4	1100
-5	1101
-6	1110
-7	1111

1's Complement Encoding

How to Encode a Negative Number:
Decimal Binary Bits

- Take 1's complement of the positive number to represent ${ }_{7}$ 0111 it's corresponding negative number 6 0110
- The four bits representations of signed numbers using 50101 l's complement encoding is shown in the table
- Whenever, a signed number has its MSb as 1 , that means? it is a negative number. So take its 1 's complement and 1 0011 represent it with a negative sign

0	0000
-0	1111
-1	1110
-2	1101
-3	1100
-4	1011
-5	1010
-6	1001
-7	1000

1s Complement Encoding (cont...)

Limitations:

- Two different encodings for zeros (positive \& negative)

Decimal	Binary Bits
7	0111
6	0110
5	0101
4	0100
3	0011
2	0010
1	0001
0	0000
-0	1111
-1	1110
-2	1101
-3	1100
-4	1011
-5	1010
-6	1001
-7	1000

2s Complement Encoding

How to Encode a Negative Number:

Decimal Binary Bits

- Take 2's complement of the positive number to represent 7 0111 it's corresponding negative number 0110
$\begin{array}{lll}\text { - The four bits representations of signed numbers using } & 5 & 0101 \\ \text { 2's complement encoding is shown in the table } & 3 & 0100 \\ 0011\end{array}$
- Whenever, a signed number has its MSb as 1, that means 2 2010 it is a negative number. So take its 2's complement and 10001 represent it with a negative sign

$+/-0$	0000
-1	1111
-2	1110
-3	1101
-4	1100
-5	1011
-6	1010
-7	1001
-8	1000

2s Complement Encoding (cont...)

Limitations Resolved:

- Single encoding for zero (no concept of negative zero)

$$
+0=0000 \quad \text { and } \quad-0=0000
$$

- Subtraction can be done using addition, so you don't need a separate hardware for subtraction. For example:

Decimal	Binary Bits
7	0111
6	0110
5	0101
4	0100
3	0011
2	0010
1	0001
$+/-0$	0000
-1	1111
-2	1110
-3	1101
-4	1100
-5	1011
-6	1010
-7	1001
-8	1000

Comparison of 4 bit Signed and Unsigned Numbers

Binary Unsigned Bits	SM	1s Comp	2's Comp
0000	0	0	0
0001	1	1	1
0010	2	2	2
0011	3	3	3
0100	4	4	4
0101	5	5	5
0110	6	6	6
0111	7	7	7
1000	8	-0	-7
1001	9	-1	-6
1010	10	-2	-5
1011	11	-3	-4
1100	12	-4	-3
1101	13	-5	-2
1110	14	-6	-1
1111	15	-7	-0
15	-6		
	-4		

Mapping Signed \leftrightarrow Unsigned

Binary
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Unsigned	2's Comp
0	0
1	1
2	2
3	3
4	4
5	5
6	6
7	7
8	-8
9	-7
10	-6
11	-5
12	-4
13	-3
14	-2
15	-1

Ranges of Signed Numbers

Range for Unsigned Numbers:	Decimal	2s Comp	1s Comp	SM
	7	0111	0111	0111
0 to $2^{\text {n }}-1$	6	0110	0110	0110
	5	0101	0101	0101
Range for signed Numbers (2's Comp):	4	0100	0100	0100
- $2^{\mathrm{n}-1}$ to $2^{\mathrm{n}-1}-1$	3	0011	0011	0011
	2	0010	0010	0010
Range for signed Numbers (SM \& 1's Comp)	1	0001	0001	0001
- $\left(2^{\mathrm{n}-1}-1\right) \quad$ to $2^{\mathrm{n}-1}-1$	0	0000	0000	0000
	-0	0000	1111	1000
	-1	1111	1110	1001
	-2	1110	1101	1010
	-3	1101	1100	1011
	-4	1100	1011	1100
	-5	1011	1010	1101
Note: Since 2's complement has only one way of	-6	1010	1001	1110
representing/encoding zero, so we have one additional	-7	1001	1000	1111
number on the negative side	-8	1000	-	-

Integer Ranges with Different Storage Sizes

Storage	Minimum	Maximum
Unsigned (8 bits)	0	255
Signed (8 bits)	-128	127
Unsigned (16 bits)	0	65535
Signed (16bits)	-32768	32767
Unsigned (32 bits)	0	4294967295
Signed (32bits)	-2147483648	2147483647
Unsigned (64 bits)	0	18446744073709551615
Signed (64 bits)	-9223372036854775808	9223372036854775807

The range of 64 bit integers is large enough for most needs. Of course there are exceptions, like 20! $=51090942171709440000$

Overflow after Addition When using 2's Complement Encoding

Overflow in Unsigned Addition

- Overflow is a condition that occurs when a calculation produces Decimal Binary a result that is greater in magnitude than what a given register or 0 a storage location can store
- An overflow can be detected by the hardware if there is a carry out from the most significant bit after addition (Check Carry Flag after addition, if set then overflow)
- Consider addition of two 4-bit unsigned numbers:

Normal Case:	$\begin{array}{r}1001 \\ +\quad 0101 \\ \hline\end{array}$	+)	9
	1110		14
Overflow Case:	1010		10
	+) 0111	+)	7
	10001		17
	0001		1

$9 \quad 1001$
101010
$11 \quad 1011$
121100

13	1101
14	1110
15	1111

Overflow in Signed Addition

- Overflow will never occur when you add a positive Decimal Binary number to a negative number. It will occur only when the 7 two operands have same sign, but the result hasn't
- Overflow will occur when you add two negative numbers

50101 and get a positive result called Negative Overflow 0100

| 1010 |
| ---: | ---: | ---: | :--- |
| 1001 |$\quad+$| -6 |
| :--- |
| $\mathbf{- 7}$ |\quad| There is carry out from the MSb, so, an |
| :--- |
| overflow has occurred, because 0011 |
| t) |
| 10011 |\quad| means +3, when evaluated in 2's |
| :--- |
| complement |

Overflow will occur when you add two positive numbers and get a negative result called Positive Overflow					1110
				-3	1101
0110	+)	6	There is no carry out from the MSb , however, an overflow has occurred, because $\mathbf{1 0 1 1}$ means -5 , when evaluated in 2 's complement	-5	1100
$\begin{aligned} & +\quad 0101 \\ & \hline 1011 \end{aligned}$		5		-6	1010
		11		-7	1001
				-8	1000

Is This Signed Addition an Overflow?

- Consider the following example in which two four bit Decimal Binary numbers are added. There is a carry out from the MSb and 70111 the result is in 5 bits. Is this an example of overflow:

6
0110

- This is not an overflow by definition. Because even after truncating the 5 bits result in 4 bits (bit width of the datatype) the result is correct
 0001

1	0001
0	0000

1111
+1110 11101$\xrightarrow[\text { Truncate }]{ } \xrightarrow{+3}+$-1 $+\quad-2$

How does the Hardware Detect an Overflow?

- Detecting overflow after adding two unsigned numbers:
$>$ This can be detected by the hardware if there is a carry out from the most significant bit (Check Carry Flag (CF) after addition, if set then overflow)
- Detecting overflow after adding two signed numbers:
$>$ This can be detected by the hardware if the carry-in in the MSb and carry-out from the MSb are different (Check Overflow Flag (OF) after addition, if set then overflow)
- Remember, the hardware is responsible for setting/resetting these two flags
- For 4 bits signed numbers (in 2 s complement representation) detect the overflow in following examples:

Encoding Characters/Strings Inside Computers

Representing Characters And Strings (ASCII)

- The ASCII code is used to give to each symbol / key from the keyboard a unique number called ASCII code
- It can be used to convert text into ASCII code and then into binary code
- The 8-bit ASCII table contains 256 codes (from 0 to 255)
- This slide shows some common ASCII codes

Char	ASCII Code (Decimal)
a	97
b	98
C	99
d	100
e	101
f	102
g	103
h	104
i	105
j	106
k	107
I	108
m	109
n	110
o	111
p	112
q	113
r	114
s	115
t	116
u	117
v	118
w	119
x	120
y	121
z	122

Char	ASCII Code (Decimal)
A	65
B	66
C	67
D	68
E	69
F	70
G	71
H	72
I	73
J	74
K	75
L	76
M	77
N	78
O	79
P	80
Q	81
R	82
S	83
T	84
U	85
V	86
W	87
X	88
Y	89
Z	90

Char	ASCII Code (Decimal)
space	32
!	33
"	34
\#	35
\$	36
\%	37
\&	38
'	39
(40
)	41
*	42
+	43
,	44
-	45
.	46
1	47
:	58
;	59
$<$	60
$=$	61
>	62
?	63
@	64
[91
1	92
]	93
\wedge	94
-	95
-	96
\{	123
\|	124
\}	125
\sim	126
‘	145
,	146
"	147
"	148
-	149
\sim	152

Char	ASCII Code (Decimal)
0	48
1	49
2	50
3	51
4	52
5	53
6	54
7	55
8	56
9	57

Char	ASCII Code (Decimal)
$€$	128
$£$	163
$¥$	165
$\$$	36
\subset	169
тм	153
${ }^{\circ}$	176
\sim	152
\mathbf{i}	161
i	191

Representing Characters And Strings (Unicode)

- Today the Unicode Standard is the universal character-encoding standard used for representation of text for computer processing
- Unlike 7-bit standard ASCII, which can encode the English language alphabets only, Unicode can encode a variety of languages spoken around the world
- The Unicode is a standard scheme for representing plain text, however, it is not a scheme for representing rich text
- Unicode is platform, program, and language independent
- The common encoding formats used by Unicode are UTF-8, UTF-16 and UTF-32 (Unicode Transformation Format)
- UTF-8 is the default encoding form for a wide variety of Internet standards and uses one byte. The first 128 Unicode code points represent the ASCII characters, which means that any ASCII text is also a UTF-8 text
- The W3C (World Wide Web Consortium) specifies that all XML processors must read UTF-8 and UTF-16 encoding

Things To Do

- Practice converting signed and unsigned numbers from one base to another base, e.g., decimal, binary, octal, hex. Confirm your working by using online base conversion calculators:
https://www.branah.com/ascii-converter https://www.binaryconvert.com/index.html

- Write down a C program that checks the minimum and maximum value that can be stored in signed and unsigned data types like char, short, int, long, and long long. Does this has something to do with the h / w and operating system (32 bit or 64 bit)
- Write down a C program that verify as the what happens when a signed or unsigned variable of char data type overflows

Coming to office hours does NOT mean you are academically week!

