
Lecture # 14
Instruction Set Architecture - I

Computer Organization & Assembly Language Programming

#include<stdio.h>
#include<stdlib.h>
int main(){
printf("Learning is fun with Arif\n");
exit(0);

}

 global main
SECTION .data

msg: db "Learning is fun with Arif", 0Ah, 0h
len_msg: equ $ - msg

SECTION .text
main:

mov rax,1
mov rdi,1
mov rsi,msg
mov rdx,len_msg
syscall
mov rax,60
mov rdi,0
syscall

0: b8 01 00 00 00
5: bf 01 00 00 00
a: 48 be 00 00 00 00 00
11: 00 00 00
14: ba 1b 00 00 00
19: 0f 05
1b: b8 3c 00 00 00
20: bf 00 00 00 00
25: 0f 05

Instructor: Muhammad Arif Butt, Ph.D.

Slides of first half of the course are adapted from:
https://www.nand2tetris.org
Download s/w tools required for first half of the course from the following link:
https://drive.google.com/file/d/0B9c0BdDJz6XpZUh3X2dPR1o0MUE/view

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	5 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	25

Solution: multiplex, using an instruction register

program

Memory

data

ALU

instruction	
register

data	
address

fetch /
execute
bit

mux

instruction

instruction	
address

Memory	
address	

input	

control	bus

address	bus

Memory	
output

address	bus (data	flows	not	shown,	to	minimize	clutter)

load	
on	
fetch

instruction

data

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	1 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	33

Interactive simulation (using Xor as an example)

Simulation process:
• Load the HDL file into the hardware simulator
• Enter values (0’s and 1’s) into the chip’s input pins (e.g. a and b)
• Evaluate the chip’s logic
• Inspect the resulting values of:

q Output pins (e.g. out)
q Internal pins (e.g. nota, notb, aAndNotb, notaAndb)

a

Not

Not

And

And

Or

b

out
nota

notb aAndNotb

notaAndb

Xor.hdl
CHIP Xor {

IN a, b;
OUT out;

PARTS:
Not (in=a, out=nota);
Not (in=b, out=notb);
And (a=a, b=notb, out=aAndNotb);
And (a=nota, b=b, out=notaAndb);
Or (a=aAndNotb, b=notaAndb, out=out);

}

CHIP Xor {
IN a, b;
OUT out;
PARTS:
Not(in=a, out=nota);
Not(in=b, out=notb);
And(a=nota, b=b, out=w1);
And(a=a, b=notb, out=w2);
Or(a=w1, b=w2, out=out);

}

@R1
D=M
@temp
M=D

0000000000000001
1111110000010000
0000000000010000
1110001100001000

• Overview of Computer System
• Universality of Computer System
• Turing Machine
• Von Neumann Architecture
• Instruction Set Architecture (ISA)

2

Today’s Agenda

Instructor: Muhammad Arif Butt, Ph.D.

3

Overview of Computer System

Instructor: Muhammad Arif Butt, Ph.D.

ALU

program

Memory CPU

Registers

data CU

• A machine language is an agreed-upon formalism, designed to code low-level programs as a
series of machine instructions

• Using these instructions residing inside the Memory, the programmer can command the CPU
to fetch an instruction/data from memory/input device, perform arithmetic/logic operations on
that data, and finally store result inside the memory/output device. Moreover, data may need to
be moved from one Register to another and may need to test different Boolean conditions

4

Universality of
Computer Systems

Instructor: Muhammad Arif Butt, Ph.D.

5

Computers Are Flexible

Instructor: Muhammad Arif Butt, Ph.D.

• Most machines in the world
do one thing, e.g., washing
machine washes clothes, air
conditioners are used to
control temperature of a room

• On the other hand a computer
e.g., a smart phone can do
lots and lots of things, voice
communication, word
processing, playing games,
using internet, watch videos,
and so on

6

Universality

Instructor: Muhammad Arif Butt, Ph.D.

Theory Practice

Alan Turing: (1912 – 1954)

Universal Turing Machine (1936)
John Von Nuemann: (1903 – 1957)

Stored Program Computer

Same hardware can run many different software programs

7

Turing Machine

Instructor: Muhammad Arif Butt, Ph.D.

State Transition
Logic

q0

State

Head

Tape

2 3 6 8 - 2 3 3 6 = 3 2 …..

2368
- 2336

32

• The Turing Machine (TM) was invented in 1936 by Alan Turing, which is a simple device
that can capture the notion of computability (Computability means what can or cannot be
solved/computed on a computer?)

• A Turing Machine (TM) is a mathematical model which consists of state transition logic, a
state register, a head and an infinite length tape divided into cells on which input is given. It
reads the input symbol pointed to by the Head, according to the transition function replaces it
with another symbol, change the register state, and moves the Head to either left or right. On
reaching the end of the string, if the register state is accept state, the input string is accepted,
otherwise rejected

• A Turing Machine (TM) consists of:
i. Finite set of states (Q)
ii. Input alphabets (allowed symbols)
iii. Tape alphabets (input symbols)
iv. Transition Logic/Function
v. Start state q0

vi. Accept state qaccept

vii. Reject state qreject

8

Turing Machine (cont…)

Instructor: Muhammad Arif Butt, Ph.D.

Example: A TM that checks an odd binary number

State Transition
Logic

q0

Current State

1 0 1 1

Head

…..
Tape

i. Q = {q0, q1, qa, qr}
ii. ∑ = Input alphabets {0, 1}
iii. X=Tape alphabets{0, 1, space}
iv. Transition Table/Function

δ : Q,X → Q,X ,L/R
v. Start state = q0
vi. Accept state = qa
vii. Reject state = qr

q0 , 0 q0 , 0, R
q0 , 1 q0 , 1, R
q0 ,sp q1 , sp, L
q1 , 0 qr , 0, R
q1 , 1 qa , 1, R

q0

q1

qr qa

0/0,R
1/1,R

sp/sp,L

1/1,R0/0,R

State Diagram

Transition Table

Example1: 10112

q1qa

9

Turing Machine (cont…)

Instructor: Muhammad Arif Butt, Ph.D.

Example: A TM that checks an odd binary number

State Transition
Logic

q0

Current State

1 0 1 0

Head

…..
Tape

i. Q = {q0, q1, qa, qr}
ii. ∑ = Input alphabets {0, 1}
iii. X=Tape alphabets{0, 1, space}
iv. Transition Table/Function

δ : Q,X → Q,X ,L/R
v. Start state = q0
vi. Accept state = qa
vii. Reject state = qr

q0 , 0 q0 , 0, R
q0 , 1 q0 , 1, R
q0 ,sp q1 , sp, L
q1 , 0 qr , 0, R
q1 , 1 qa , 1, R

q0

q1

qr qa

0/0,R
1/1,R

sp/sp,L

1/1,R0/0,R

State Diagram

Transition Table

Example1: 10102

q1qaqr

10

Von Neumann Architecture

Instructor: Muhammad Arif Butt, Ph.D.

ALU

program

Memory CPU

registers

output

data

intput

The Von Neumann architecture is a computer architecture given by a mathematician and physicist John von
Neumann describes the design architecture for an electronic digital computer with these components:
Ø A Processing Unit that contains an ALU and registers
Ø A Control Unit that contains an instruction register and program counter
Ø A Memory unit that stores data and instructions
Ø An Input and Output mechanism
Ø An external mass storage

CU

11

Stored Program Concept

Instructor: Muhammad Arif Butt, Ph.D.

ALU

Memory CPU

Registers

0
1
2

...

n-1

n 1100101010010101
n+1 1100100101100111
n+2 0011001010101011

... ...

Program/
Instructions

Data

0101110011100110
1011000101010100
1110001011111100
...

intput output

Computer System

The main idea in the Von Neumann architecture is the stored program concept. We can
put the program inside the memory along with the data on which this program is going
to operate. This is how

Same hardware can run many different software programs

CU

12

Machine Language

Instructor: Muhammad Arif Butt, Ph.D.

ALU

Memory CPU
0 0101110011100110

1 1011000101010100

2 1110001011111100

... ...

n
n+1
n+2

...

1100101010010101
1100100101100111
0011001010101011

...
Registers

Data

Handling instructions:
• 1011means “addition”

• 000101010100 means “operate on memory address340”
• Next we have to execute the instruction at address 2

operation
addressing

current
instruction

intput

control

Computer System

Program

output

CU

13

Assembler and Mnemonics

Instructor: Muhammad Arif Butt, Ph.D.

Option 1:
• Use machine language, in which case a programmer should exactly know
the bit positions and their meanings

• Really difficult to write programs in machine language. No one do so these
days

add R3 R2
Sample instructionInstruction: 0100010 0011 0010

Option 2:
• Use symbolic machine language instructions, using assembly language
of the specific hardware, e.g., add R3 R2

• A bit easy to write programs in assembly language, but later someone has to
transform it to machine language

• A program called the assembler is used to translate the symbolic code into
machine code

14

Assembler and Symbols

Instructor: Muhammad Arif Butt, Ph.D.

Assembly Language:Machine Language:

add 1 Mem[129]

1010 0001 10000001 add 1, Mem[129]

• An instruction that instructs to add 1 to the contents of memory location 129,
may be encoded in the machine and assembly language like:

add 1, index

• For a programmer, it is a bit difficult to specify and memorize the memory
addresses for different purposes

• A more friendlier syntax can be used if we assume that the symbol index
stands for Mem[129]

• The assembler will resolve the symbol index into the specific memory address,
i.e., “index” Mem[129]

Assembly Language:

15

Instruction Set Architecture (ISA)

Instructor: Muhammad Arif Butt, Ph.D.

• Every computer has an Instruction Set Architecture (ISA), which is
the set of instructions, registers, memory space and other features
visible to the assembly language programmer

• It is an Interface between hardware and low-level software and
sometimes referred to as a machine language, although it is not
entirely accurate

• Example ISAs: x86, ARM, MIPS, PowerPC, SPARC, RISC-V
• Six dimensions of ISA:
• Class of ISA
• Types and Sizes of Operands
• Operations
• Memory Addressing Models and Addressing Modes
• Control Flow Instructions
• Encoding an ISA

16

Things To Do

Instructor: Muhammad Arif Butt, Ph.D.

Coming to office hours does NOT mean you are academically week!

