
Lecture # 10
HDL for Sequential Circuits

Computer Organization & Assembly Language Programming

#include<stdio.h>
#include<stdlib.h>
int main(){
printf("Learning is fun with Arif\n");
exit(0);

}

 global main
SECTION .data

msg: db "Learning is fun with Arif", 0Ah, 0h
len_msg: equ $ - msg

SECTION .text
main:

mov rax,1
mov rdi,1
mov rsi,msg
mov rdx,len_msg
syscall
mov rax,60
mov rdi,0
syscall

0: b8 01 00 00 00
5: bf 01 00 00 00
a: 48 be 00 00 00 00 00
11: 00 00 00
14: ba 1b 00 00 00
19: 0f 05
1b: b8 3c 00 00 00
20: bf 00 00 00 00
25: 0f 05

Instructor: Muhammad Arif Butt, Ph.D.

Slides of first half of the course are adapted from:
https://www.nand2tetris.org
Download s/w tools required for first half of the course from the following link:
https://drive.google.com/file/d/0B9c0BdDJz6XpZUh3X2dPR1o0MUE/view

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	5 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	25

Solution: multiplex, using an instruction register

program

Memory

data

ALU

instruction	
register

data	
address

fetch /
execute
bit

mux

instruction

instruction	
address

Memory	
address	

input	

control	bus

address	bus

Memory	
output

address	bus (data	flows	not	shown,	to	minimize	clutter)

load	
on	
fetch

instruction

data

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	1 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	33

Interactive simulation (using Xor as an example)

Simulation process:
• Load the HDL file into the hardware simulator
• Enter values (0’s and 1’s) into the chip’s input pins (e.g. a and b)
• Evaluate the chip’s logic
• Inspect the resulting values of:

q Output pins (e.g. out)
q Internal pins (e.g. nota, notb, aAndNotb, notaAndb)

a

Not

Not

And

And

Or

b

out
nota

notb aAndNotb

notaAndb

Xor.hdl
CHIP Xor {

IN a, b;
OUT out;

PARTS:
Not (in=a, out=nota);
Not (in=b, out=notb);
And (a=a, b=notb, out=aAndNotb);
And (a=nota, b=b, out=notaAndb);
Or (a=aAndNotb, b=notaAndb, out=out);

}

CHIP Xor {
IN a, b;
OUT out;
PARTS:
Not(in=a, out=nota);
Not(in=b, out=notb);
And(a=nota, b=b, out=w1);
And(a=a, b=notb, out=w2);
Or(a=w1, b=w2, out=out);

}

@R1
D=M
@temp
M=D

0000000000000001
1111110000010000
0000000000010000
1110001100001000

• Class Quiz
• Why Sequential Circuits?
• Understanding Time in Circuits
• Combinational vs Sequential Circuits
• Flip Flops
– D flip Flop
– SR Flip Flop
– JK Flip Flop
– T Flip Flop

2

Today’s Agenda

Instructor: Muhammad Arif Butt, Ph.D.

3Instructor: Muhammad Arif Butt, Ph.D.

Class Quiz:

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	2 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	53

The Hack ALU operation
pre-setting
the	x input

pre-setting
the	y input

selecting	between	
computing	+ or	&

post-setting	
the	output

Resulting
ALU	output

zx nx zy ny f no out

 if zx
then
x=0

 if nx
 then
x=!x

 if zy
then
y=0

 if ny
 then
y=!y

 if f
 then out=x+y
else out=x&y

if no
then
out=!out out(x,y)=

zx no

zr

nx zy ny f

ALU

ng

16 bits

16 bits

x

y 16 bits
out

9

The Hack ALU Operation

Instructor: Muhammad Arif Butt, Ph.D.

Pre-setting the x input Pre-setting the y input Selecting op
+ or &

Post-setting
o/p

ALU
output

zx nx zy ny f no out

i f zx
then

x=0

i f nx
then

x=!x

i f zy
then

y=0

i f ny
then

y=!y

i f f
then

out=x+y
else

out=x&y

i f no
then

out=!out

out(x,y)
= out

out = f(control bits, x, y)

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	2 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	53

The Hack ALU operation
pre-setting
the	x input

pre-setting
the	y input

selecting	between	
computing	+ or	&

post-setting	
the	output

Resulting
ALU	output

zx nx zy ny f no out

 if zx
then
x=0

 if nx
 then
x=!x

 if zy
then
y=0

 if ny
 then
y=!y

 if f
 then out=x+y
else out=x&y

if no
then
out=!out out(x,y)=

zx no

zr

nx zy ny f

ALU

ng

16 bits

16 bits

x

y 16 bits
out

9

The Hack ALU Operation

Instructor: Muhammad Arif Butt, Ph.D.

Pre-setting the x input Pre-setting the y input Selecting op
+ or &

Post-setting
o/p

ALU
output

zx nx zy ny f no out

i f zx
then

x=0

i f nx
then

x=!x

i f zy
then

y=0

i f ny
then

y=!y

i f f
then

out=x+y
else

out=x&y

i f no
then

out=!out

out(x,y)
= out

out = f(control bits, x, y)

• Problem 1: Suppose x=12310 and y =14110 and the six control inputs are
000111. What is the value of out in hex. Also mention the values of zr and
ng flags

• Problem 2: Suppose x=5A6316 and y =1CF416 and the six control inputs
are 010101. What is the value of out in hex. Also mention the values of zr
and ng flags

4

Why
Sequential Logic?

Instructor: Muhammad Arif Butt, Ph.D.

5

Combinational vs Sequential Logic

Instructor: Muhammad Arif Butt, Ph.D.

• So far we have designed and implemented our own ALU using
different combinational chips whose output at any time depend on
the current input. The combinational chips we have designed so far
cannot maintain state

• Since computers must be able to not only compute values but also
store and recall values, they must be equipped with memory elements
that can preserve data over time. These memory elements are built
from sequential chips

• The act of ‘‘remembering something’’ is inherently time-dependent.
Thus, in order to build chips that ‘‘remember’’ previously stored
information, we must first develop some standard means for
representing the progression of time

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	3 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	5

Physical time / clock time

1

0
clock:

time: 1 2 3 4 5 . . .

physical
time: Arrow of time:

Continuous

Discrete time:
State changes occur
only when advancing
from one time unit to
another

6

Physical Time / Clock Time

Instructor: Muhammad Arif Butt, Ph.D.

Arrow of time:

Continuous

Discrete time:
State changes occur only when
advancing from one time unit to
another

• In most computers, the passage of time is represented by a master clock that
delivers a continuous train of alternating signals using a hardware called an
oscillator, which alternates continuously between two phases 0 and 1

• The elapsed time between the beginning of a ‘‘tick’’ and the end of the
subsequent ‘‘tock’’ is called clock cycle

• The current clock phase (tick or tock) is represented by a binary signal.
Using the hardware’s circuitry, this signal is simultaneously broadcasted to
every sequential chip throughout the computer platform

7

Time-independent Logic

Instructor: Muhammad Arif Butt, Ph.D.

• So far we ignored the issue of time and the chip’s inputs were just
“sitting there” – fixed and unchanging

• The chip’s output was a pure function of the current inputs, computed
instantaneously. It did not depend on anything that happened
previously (previous state)

• This style of gate logic is sometimes called time-independent logic or
combinational logic

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	1 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	33

Interactive simulation (using Xor as an example)

Simulation process:
• Load the HDL file into the hardware simulator
• Enter values (0’s and 1’s) into the chip’s input pins (e.g. a and b)
• Evaluate the chip’s logic
• Inspect the resulting values of:

q Output pins (e.g. out)
q Internal pins (e.g. nota, notb, aAndNotb, notaAndb)

a

Not

Not

And

And

Or

b

out
nota

notb aAndNotb

notaAndb

Xor.hdl
CHIP Xor {

IN a, b;
OUT out;

PARTS:
Not (in=a, out=nota);
Not (in=b, out=notb);
And (a=a, b=notb, out=aAndNotb);
And (a=nota, b=b, out=notaAndb);
Or (a=aAndNotb, b=notaAndb, out=out);

}

8

Hello, Time

Instructor: Muhammad Arif Butt, Ph.D.

x = 17

for i = 0 … 99:

sum = sum + a[i]

Abstraction Issues:
• The hardware must support maintaining state, for example

• The hardware must support computations over time, for example

Implementation Issues:
• The hardware must handle the physical

time delays associated with calculating and
moving data from one chip to another

9

The Clock

Instructor: Muhammad Arif Butt, Ph.D.
Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	3 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	6

Chip behavior over time (example)

1

0

0

1

clock:

time: 1 2 3 4 5 . . .

0

1

physical
time:

in:
(example)

(example)

out:
(Not in)

• Desired / idealized behavior of the
in and out signals

• That’s how we want the hardware to
handle time-dependent behavior

Arrow of time:

Continuous

Discrete time:
State changes occur
only when advancing
from one time unit to
another

10

The Clock

Instructor: Muhammad Arif Butt, Ph.D.

1

0

0

1

clock:

time:

0

1

physical
time:

i n :
(example)

ou t :
(Not in)

Arrow of time:

Continuous

actual behavior of the
i n and out signals, due
to physical time delays

11

The Clock

Instructor: Muhammad Arif Butt, Ph.D.

1

0

0

1

clock:

time:

0

1

physical
time:

Clock cycle
• designed to neutralize the time delays
• cycle length: slightly longer than the time delays

Time delays
• propagation delays
• computation delays

i n :
(example)

ou t :
(Not in)

Arrow of time:

Continuous

12

The Clock

Instructor: Muhammad Arif Butt, Ph.D.Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	3 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	9

Chip behavior over time (example)

1

0

0

1

clock:

time: 1 2 3 4 5 . . .

0

1

physical
time:

in:
(example)

(example)

Not: an example of a combinational chip:

• The gate reacts “immediately” to the inputs

• Well, not really, but the clock’s behavior creates this effect.

out:
(Not in)

Arrow of time:

Continuous

Discrete time:
State changes occur
only when advancing
from one time unit to
another

An example of a combinational chip (NOT gate):
• The gate reacts “immediately” to the inputs
• Well, not really, but the clock’s behavior creates this effect.

13

Combinational Logic vs. Sequential Logic

Instructor: Muhammad Arif Butt, Ph.D.
Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	3 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	10

Combinational logic / sequential logic

Combinational logic:

Sequential logic:

The output is a pure function
of the present input only

The output depends on:
• the present input (optionally)
• the history of the input
• (creates a memory effect).

Sequential logic:
The output at time t is
dependent on input at time t-1
(previously stored state) and
optionally on current input. The
history of the input creates a
memory effect

Combinational logic:
The output at time t is completely
dependent on input at time t

clock

clock

out[t] = function(in[t])

out[t] = function(in[t-1])

14

Combinational Logic vs. Sequential Logic

Instructor: Muhammad Arif Butt, Ph.D.
Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	3 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	10

Combinational logic / sequential logic

Combinational logic:

Sequential logic:

The output is a pure function
of the present input only

The output depends on:
• the present input (optionally)
• the history of the input
• (creates a memory effect).

Sequential logic:
The output at time t is
dependent on input at time t-1
(previously stored state) and
optionally on current input. The
history of the input creates a
memory effect

Combinational logic:
The output at time t is completely
dependent on input at time t

clock

clock

out[t] = function(in[t])

out[t] = function(in[t-1])

15Instructor: Muhammad Arif Butt, Ph.D.

Sequential Logic

1 2 3 4 5Time

State a b = f(a) c = f(b) d = f(c) e = f(d)

state[t] = function(state[t-1])

Now the
question is how
can we move
some
information
from time t-1 to
time t. We can
do that using
flip-flop

16Instructor: Muhammad Arif Butt, Ph.D.

Sequential Logic

Combinational
Circuit

Flip-flops

Inputs Outputs

Clock

Sequential Circuit

17

Flip Flops

Instructor: Muhammad Arif Butt, Ph.D.

18

Latches and Flip Flops

Instructor: Muhammad Arif Butt, Ph.D.

• So to design sequential circuits we need a chip that can remember the state
of the circuit, i.e., remember one bit of information from time t-1, so that it
can be used at time t

• The circuitry, that we have used so far, moving some information from time
t-1 to time t is still missing

• This bit of information can either be 0 or 1. So the state that we want to
store is a zero or a one

• The gate/chip that can flip between two stable states i.e., “remembering 0”
or “remembering 1” is called a latch. It can be designed using two cross
coupled NAND gates

• The limitation of a latch is that its state changes for the duration the clock
input remains at logic 1 level. Due to his unreliable operation the o/p of a
latch cannot be applied directly to some other latch when all the latches are
triggered by a common clock pulse

• Solution to this problem are Flip Flops, which are constructed in such a way
that they trigger only at signal transition. Comes in two flavors:
Positive/Rising Edge Triggered, and Negative/Falling Edge Triggered

19

Types & Behavior of Flip Flops

Instructor: Muhammad Arif Butt, Ph.D.

R D

S

J

K

T

if S=R=0 then
New State = Old State

elseif S=R=1 then
New State = Indeterminate

else
New State = S

RS Flip-Flop D Flip-Flop JK Flip-Flop T Flip-Flop

if J=K=0 then
Next State = Old State

elseif J=K=1 then
New State = Comp(OS)
else
New State = J

New State = D

Qt+1

if T=0 then
New State = Old State

else
New State = Comp(OS)

R S Qt Qt+1

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 x

1 1 1 x

D Qt Qt+1

0 0 0

0 1 0

1 0 1

1 1 1

T Qt Qt+1

0 0 0

0 1 1

1 0 1

1 1 0

J K Qt Qt+1

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 0

Qt+1 = D

Qt+1 = JQ’ + K’Q

Qt+1 = T Å Q

Qt+1 = S + QR’

Qt+1 Qt+1 Qt+1

Qt Qt+1 D
0 0 0

0 1 1

1 0 0

1 1 1

20

D Flip Flop

Instructor: Muhammad Arif Butt, Ph.D.

• We can design a D-Flip Flop (DFF) using the
built-in NAND gate available in our h/w
simulator
• Step 1: Create an un-clocked latch
• Step 2: Use a master slave configuration

to create a flip flop (-ve edge triggered)

S

R

Q

Q

D

C

D (Latch)
Master

D D (Latch)
Slave

DIn Out

• Unfortunately, the hardware simulator which we are using does not permit
combinational loops, so we cannot build DFF chip using HDL

• Fortunately, the way we have a build in NAND gate, similarly we have a
built in DFF gate/chip available in our h/w simulator. So we will be
designing and building all the sequential chips of our Hack computer by
using build-in DFF chip

21

Built-in D Flip Flop in H/W Simulator

Instructor: Muhammad Arif Butt, Ph.D.

• The most elementary sequential device
from which all memory elements will
be designed is the data flip-flop

• Like Nand gate, our hardware simulator
provides a built-in DFF implementation
that can be readily used by other chips

• All the sequential chips in the computer
(registers, memory, and counters) are
based on numerous DFF gates. All these
DFFs are connected to the same master
clock. At the beginning of each clock
cycle, the outputs of all the DFFs in the
computer commit to their inputs during
the previous time unit. At all other
times, the DFFs are latched, meaning
that changes in their inputs have no
immediate effect on their outputs

DFFin out

/**
* Data Flip-flop:
* out(t) = in(t-1)
* where t is the current
* time unit, or clock cycle.
*/

CHIP DFF {
IN in;
OUT out;

BUILTIN DFF;
CLOCKED in;

}

22

Behavior of D - Flip Flop

Instructor: Muhammad Arif Butt, Ph.D.

• D-Flip Flop (DFF) is the simplest state-keeping gate:1-bit input, 1-bit
output

• The gate outputs its previous input: out(t) = in(t - 1)
• Due to its behavior it is also called Data Flip Flop

DFFin out

out(t) = in(t-1)

1 2 3 4 5Time

out

in
1

0

1

0

?
Move one bit of
information from
time t-1 to time t

State of DFF at t-1
Unknown101

23

Combinational vs. Sequential Chips

Instructor: Muhammad Arif Butt, Ph.D.

out(t) = f (in(t), state(t-1))

• Combinational versus sequential logic (in and out stand for one or more input and output
variables). Sequential chips always consist of a layer of DFFs sandwiched between optional
combinational logic layers

counters). Technically speaking, this is done by forming feedback loops inside the
sequential chip (see figure 3.4). In combinational chips, where time is neither mod-
eled nor recognized, the introduction of feedback loops is problematic: The output
would depend on the input, which itself would depend on the output, and thus the
output would depend on itself. On the other hand, there is no difficulty in feeding the
output of a sequential chip back into itself, since the DFFs introduce an inherent
time delay: The output at time t does not depend on itself, but rather on the output at
time t! 1. This property guards against the uncontrolled ‘‘data races’’ that would
occur in combinational chips with feedback loops.

Recall that the outputs of combinational chips change when their inputs change,
irrespective of time. In contrast, the inclusion of the DFFs in the sequential archi-
tecture ensures that their outputs change only at the point of transition from one
clock cycle to the next, and not within the cycle itself. In fact, we allow sequential
chips to be in unstable states during clock cycles, requiring only that at the beginning
of the next cycle they output correct values.

This ‘‘discretization’’ of the sequential chips’ outputs has an important side effect:
It can be used to synchronize the overall computer architecture. To illustrate, sup-
pose we instruct the arithmetic logic unit (ALU) to compute xþ y where x is the
value of a nearby register and y is the value of a remote RAM register. Because of
various physical constraints (distance, resistance, interference, random noise, etc.) the
electric signals representing x and y will likely arrive at the ALU at different times.
However, being a combinational chip, the ALU is insensitive to the concept of time—
it continuously adds up whichever data values happen to lodge in its inputs. Thus, it
will take some time before the ALU’s output stabilizes to the correct xþ y result.
Until then, the ALU will generate garbage.

Combinational chip

comb.
logicin out

Sequential chip

comb.
logicin outDFF

gate(s)
comb.
logic

(optional) (optional)time delay

out = some function of (in) out(t) = some function of (in(t–1), out(t–1))

Figure 3.4 Combinational versus sequential logic (in and out stand for one or more input
and output variables). Sequential chips always consist of a layer of DFFs sandwiched between
optional combinational logic layers.

46 Chapter 3

counters). Technically speaking, this is done by forming feedback loops inside the
sequential chip (see figure 3.4). In combinational chips, where time is neither mod-
eled nor recognized, the introduction of feedback loops is problematic: The output
would depend on the input, which itself would depend on the output, and thus the
output would depend on itself. On the other hand, there is no difficulty in feeding the
output of a sequential chip back into itself, since the DFFs introduce an inherent
time delay: The output at time t does not depend on itself, but rather on the output at
time t! 1. This property guards against the uncontrolled ‘‘data races’’ that would
occur in combinational chips with feedback loops.

Recall that the outputs of combinational chips change when their inputs change,
irrespective of time. In contrast, the inclusion of the DFFs in the sequential archi-
tecture ensures that their outputs change only at the point of transition from one
clock cycle to the next, and not within the cycle itself. In fact, we allow sequential
chips to be in unstable states during clock cycles, requiring only that at the beginning
of the next cycle they output correct values.

This ‘‘discretization’’ of the sequential chips’ outputs has an important side effect:
It can be used to synchronize the overall computer architecture. To illustrate, sup-
pose we instruct the arithmetic logic unit (ALU) to compute xþ y where x is the
value of a nearby register and y is the value of a remote RAM register. Because of
various physical constraints (distance, resistance, interference, random noise, etc.) the
electric signals representing x and y will likely arrive at the ALU at different times.
However, being a combinational chip, the ALU is insensitive to the concept of time—
it continuously adds up whichever data values happen to lodge in its inputs. Thus, it
will take some time before the ALU’s output stabilizes to the correct xþ y result.
Until then, the ALU will generate garbage.

Combinational chip

comb.
logicin out

Sequential chip

comb.
logicin outDFF

gate(s)
comb.
logic

(optional) (optional)time delay

out = some function of (in) out(t) = some function of (in(t–1), out(t–1))

Figure 3.4 Combinational versus sequential logic (in and out stand for one or more input
and output variables). Sequential chips always consist of a layer of DFFs sandwiched between
optional combinational logic layers.

46 Chapter 3

out = f (in)

24

Summary of Sequential Chips

Instructor: Muhammad Arif Butt, Ph.D.

state(t) = f (state(t-1), input(t))

• Sequential chips are capable of maintaining state, and, optionally acting on the state, and on the
current input

• The simplest and most elementary sequential chip is DFF, which maintain a state, i.e., the value
of the input from the previous time unit

• Using DFF we can design registers, and using registers we can design RAM, whose state is the
current values of all its registers. Given an address, the RAM emits the value of the selected
register

• All combinational chips are constructed from NAND gates, while all sequential chips are
constructed from DFF gates, and combinational chips

25

Things To Do

Instructor: Muhammad Arif Butt, Ph.D.

Coming to office hours does NOT mean you are academically week!

• Grasp the concept of all flip flops their graphic
symbols, their behavior using the respective
characteristic tables, characteristic equations, and
excitation tables

• You should know as to how to perform analysis
of a sequential circuit as well as how to design a
sequential circuit

• Try running the built-in DFF chip in the
hardware simulator to fully understand its
behavior. You can download the .hdl, .tst and
.cmp files of all the required chips from the
course bitbucket repository:

https://bitbucket.org/arifpucit/coal-repo/

