
Lecture # 11
Design of Registers

Computer Organization & Assembly Language Programming

#include<stdio.h>
#include<stdlib.h>
int main(){
printf("Learning is fun with Arif\n");
exit(0);

}

 global main
SECTION .data

msg: db "Learning is fun with Arif", 0Ah, 0h
len_msg: equ $ - msg

SECTION .text
main:

mov rax,1
mov rdi,1
mov rsi,msg
mov rdx,len_msg
syscall
mov rax,60
mov rdi,0
syscall

0: b8 01 00 00 00
5: bf 01 00 00 00
a: 48 be 00 00 00 00 00
11: 00 00 00
14: ba 1b 00 00 00
19: 0f 05
1b: b8 3c 00 00 00
20: bf 00 00 00 00
25: 0f 05

Instructor: Muhammad Arif Butt, Ph.D.

Slides of first half of the course are adapted from:
https://www.nand2tetris.org
Download s/w tools required for first half of the course from the following link:
https://drive.google.com/file/d/0B9c0BdDJz6XpZUh3X2dPR1o0MUE/view

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	5 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	25

Solution: multiplex, using an instruction register

program

Memory

data

ALU

instruction	
register

data	
address

fetch /
execute
bit

mux

instruction

instruction	
address

Memory	
address	

input	

control	bus

address	bus

Memory	
output

address	bus (data	flows	not	shown,	to	minimize	clutter)

load	
on	
fetch

instruction

data

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	1 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	33

Interactive simulation (using Xor as an example)

Simulation process:
• Load the HDL file into the hardware simulator
• Enter values (0’s and 1’s) into the chip’s input pins (e.g. a and b)
• Evaluate the chip’s logic
• Inspect the resulting values of:

q Output pins (e.g. out)
q Internal pins (e.g. nota, notb, aAndNotb, notaAndb)

a

Not

Not

And

And

Or

b

out
nota

notb aAndNotb

notaAndb

Xor.hdl
CHIP Xor {

IN a, b;
OUT out;

PARTS:
Not (in=a, out=nota);
Not (in=b, out=notb);
And (a=a, b=notb, out=aAndNotb);
And (a=nota, b=b, out=notaAndb);
Or (a=aAndNotb, b=notaAndb, out=out);

}

CHIP Xor {
IN a, b;
OUT out;
PARTS:
Not(in=a, out=nota);
Not(in=b, out=notb);
And(a=nota, b=b, out=w1);
And(a=a, b=notb, out=w2);
Or(a=w1, b=w2, out=out);

}

@R1
D=M
@temp
M=D

0000000000000001
1111110000010000
0000000000010000
1110001100001000

• Review of Sequential Chips
• What are Registers
• Design of 1-bit Register
• HDL for 1-bit Register
• Design of 16-bit Register
• HDL for 16-bit Register

2

Today’s Agenda

Instructor: Muhammad Arif Butt, Ph.D.

3

Review of Sequential Chips

Instructor: Muhammad Arif Butt, Ph.D.

state(t) = f (state(t-1), input(t))

• Sequential chips are capable of maintaining state, and, optionally acting on the state, and on the
current input

• The simplest and most elementary sequential chip is DFF, which maintain a state, i.e., the value
of the input from the previous time unit

• Using DFF we can design registers, and using registers we can design RAM, whose state is the
current values of all its registers. Given an address, the RAM emits the value of the selected
register

• All combinational chips are constructed from NAND gates, while all sequential chips are
constructed from DFF gates, and combinational chips

4

CPU Registers

Instructor: Muhammad Arif Butt, Ph.D.

5

CPU Registers

Instructor: Muhammad Arif Butt, Ph.D.

• A register is a small memory place inside the CPU that may hold data, memory address or
instruction

• The size of registers in a 64-bit computer must be of 64 bits
• In our Hack computer is a 16 bit computer, so the registers we are going to design will be of

16 bits
• There are several different classes of CPU registers which works in coordination with the

computer memory to run operations efficiently. (More on it later)

4

The Computer System

Instructor: Muhammad Arif Butt, Ph.D.

ALU

Computer System

memory

Memory CPU

CU

outputintput

Registers

6

1-Bit Register

Instructor: Muhammad Arif Butt, Ph.D.

7Instructor: Muhammad Arif Butt, Ph.D.

• A single-bit register, which we call Bit, or binary cell, is designed to store a single
bit of information (0 or 1)

• The chip interface diagram shows that it has two input pins and one output pin.
The input pin carries a data bit, the load pin enables the cell for writes, and an
output pin that emits the current state of the cell

• When you read the out pin of the binary cell, you will always get whatever is the
state of the binary cell

• To write the binary cell, we set the load bit to 1, now what ever is there on the
input bit will be stored inside the binary cell and will be available on the out pin in
the next clock cycle

• When the load bit is zero, the chip keep remembering the last input that was
loaded into it for infinity until a new load operation is performed

1-Bit Register API
load

in Bit outin Bit

8

Sequential Chips: 1-Bit Register

Instructor: Muhammad Arif Butt, Ph.D.

load

in Bit

• Goal: Remember an input bit forever, until requested to load a new
value

• More accurately:
• Stores a bit until...
• Instructed to load, and store, another bit

outin Bit

Chip name: Bit
Inputs: in, load
Outputs: out
Function: If load(t) then

out(t+1) = in(t)
else
out(t+1) = out(t)

9

Sequential Chips: 1-Bit Register

Instructor: Muhammad Arif Butt, Ph.D.

load

in Bit outin Bit

1 2 3 4 5Time

out

in
1

0

1

0

?

1
0

Load

Chip name: Bit
Inputs: in, load
Outputs: out
Function: If load(t) then

out(t+1) = in(t)
else

out(t+1) = out(t)

10

1-Bit Register Implementation

Instructor: Muhammad Arif Butt, Ph.D.

DFFin out

11

1-Bit Register Implementation

Instructor: Muhammad Arif Butt, Ph.D.

Well, not so. The device shown in the middle of figure 3.1 is invalid. First, it is not
clear how we’ll ever be able to load this device with a new data value, since there are
no means to tell the DFF when to draw its input from the in wire and when from the
out wire. More generally, the rules of chip design dictate that internal pins must
have a fan-in of 1, meaning that they can be fed from a single source only.
The good thing about this thought experiment is that it leads us to the correct and

elegant solution shown in the right side of figure 3.1. In particular, a natural way to
resolve our input ambiguity is to introduce a multiplexor into the design. Further, the
‘‘select bit’’ of this multiplexor can become the ‘‘load bit’’ of the overall register chip:
If we want the register to start storing a new value, we can put this value in the in

input and set the load bit to 1; if we want the register to keep storing its internal
value until further notice, we can set the load bit to 0.
Once we have developed the basic mechanism for remembering a single bit over

time, we can easily construct arbitrarily wide registers. This can be achieved by
forming an array of as many single-bit registers as needed, creating a register that
holds multi-bit values (figure 3.2). The basic design parameter of such a register is its
width—the number of bits that it holds—e.g., 16, 32, or 64. The multi-bit contents of
such registers are typically referred to as words.

Memories Once we have the basic ability to represent words, we can proceed to
build memory banks of arbitrary length. As figure 3.3 shows, this can be done by
stacking together many registers to form a Random Access Memory RAM unit. The
term random access memory derives from the requirement that read/write operations

M
ux

load

DFF DFF DFF

out(t) = in(t–1) if load(t–1) then out(t) = in(t–1)
else out(t) = out(t–1)

1-bit register (Bit)Flip-flop

out(t) = out(t–1) ?
out(t) = in(t–1) ?

Invalid design

in out in out in out

Figure 3.1 From a DFF to a single-bit register. The small triangle represents the clock input.
This icon is used to state that the marked chip, as well as the overall chip that encapsulates it,
is time-dependent.

43 Sequential Logic

12

1-Bit Register Implementation

Instructor: Muhammad Arif Butt, Ph.D.
Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	3 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	23

1-bit register implementation

DFF

M
UX

load

DFFDFF

out(t) = in(t-1) if load(t-1) then out(t)=in(t-1)
else out(t)=out(t-1)

1-bit register (Bit)Flip-Flop

out(t) = out(t-1) ?
out(t) = in(t-1) ?

Invalid design

in out in out in out
1

time: 1 2 3 4 5

load

in
out

0

1

0

1

1
0

out:

in:
(example)

load:
(example)

13

1-Bit Register Implementation

Instructor: Muhammad Arif Butt, Ph.D.
Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	3 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	24

1-bit register implementation

DFF

M
UX

load

DFFDFF

out(t) = in(t-1) if load(t-1) then out(t)=in(t-1)
else out(t)=out(t-1)

1-bit register (Bit)Flip-Flop

out(t) = out(t-1) ?
out(t) = in(t-1) ?

Invalid design

in out in out in out
1

time: 1 2 3 4 5

load

in
out?

1
1

?

1

0

1

0

1

1
0

out:

in:
(example)

load:
(example)

14

1-Bit Register Implementation

Instructor: Muhammad Arif Butt, Ph.D.
Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	3 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	25

1-bit register implementation

DFF

M
UX

load

DFFDFF

out(t) = in(t-1) if load(t-1) then out(t)=in(t-1)
else out(t)=out(t-1)

1-bit register (Bit)Flip-Flop

out(t) = out(t-1) ?
out(t) = in(t-1) ?

Invalid design

in out in out in out

time: 1 2 3 4 5

1

load

in
out?

1
1

?

1

0

1

0

1

1
0

out:

in:
(example)

load:
(example)

15

1-Bit Register Implementation

Instructor: Muhammad Arif Butt, Ph.D.
Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	3 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	26

1-bit register implementation

DFF

M
UX

load

DFFDFF

out(t) = in(t-1) if load(t-1) then out(t)=in(t-1)
else out(t)=out(t-1)

1-bit register (Bit)Flip-Flop

out(t) = out(t-1) ?
out(t) = in(t-1) ?

Invalid design

in out in out in out1
1

0
1

1

time: 1 2 3 4 5

0

load

in
out

0

1

0

1

1
0

out:

in:
(example)

load:
(example)

16

1-Bit Register Implementation

Instructor: Muhammad Arif Butt, Ph.D.
Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	3 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	27

1-bit register implementation

DFF

M
UX

load

DFFDFF

out(t) = in(t-1) if load(t-1) then out(t)=in(t-1)
else out(t)=out(t-1)

1-bit register (Bit)Flip-Flop

out(t) = out(t-1) ?
out(t) = in(t-1) ?

Invalid design

in out in out in out1
1

0
1

1

time: 1 2 3 4 5

0

load

in
out

0

1

0

1

1
0

out:

in:
(example)

load:
(example)

17

1-Bit Register Implementation

Instructor: Muhammad Arif Butt, Ph.D.
Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	3 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	28

1-bit register implementation

DFF

M
UX

load

DFFDFF

out(t) = in(t-1) if load(t-1) then out(t)=in(t-1)
else out(t)=out(t-1)

1-bit register (Bit)Flip-Flop

out(t) = out(t-1) ?
out(t) = in(t-1) ?

Invalid design

in out in out in out1
1

0
0

1

time: 1 2 3 4 5

1

load

in
out

0

1

0

1

1
0

out:

in:
(example)

load:
(example)

18

1-Bit Register Implementation

Instructor: Muhammad Arif Butt, Ph.D.
Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	3 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	29

1-bit register implementation

DFF

M
UX

load

DFFDFF

out(t) = in(t-1) if load(t-1) then out(t)=in(t-1)
else out(t)=out(t-1)

1-bit register (Bit)Flip-Flop

out(t) = out(t-1) ?
out(t) = in(t-1) ?

Invalid design

in out in out in out0
0

0
0

0

time: 1 2 3 4 5

0

load

in
out

0

1

0

1

1
0

out:

in:
(example)

load:
(example)

19

Computers Are Flexible

Instructor: Muhammad Arif Butt, Ph.D.

DFF

M
U
X

load

in out0
0

0
0

0

time: 1 2 3 4 5

0

load

i n
out

1
0

0

1

1
0

ou t :

i n :
(example)

l oad:
(example)

Resulting behavior:
Stores and emits a
value, until instructed
to load (and store) a
new value

20

HDL for 1-bit Register

Instructor: Muhammad Arif Butt, Ph.D.

/** 1-bit register:
* If load[t] == 1 then. //load input in the ff
* out[t+1] = in[t]
* else //out does not change
*/ (out[t+1] = out[t])

CHIP Bit {
IN in, load;
OUT out;

PARTS:
Mux(a=sendBack, b=in, sel=load, out=MuxOut);
DFF(in=MuxOut, out=sendBack, out=out);

}

Bit.hdl

DFF

M
U
X

load

in out0
0

0
0

0

0

load

i n
out

21

1-Bit Register Demo

Instructor: Muhammad Arif Butt, Ph.D.

Demo
Hardware Simulator

Interactive Testing
11/Bit.hdl

22

Multi-Bit Register

Instructor: Muhammad Arif Butt, Ph.D.

23

Multi-Bit Register

Instructor: Muhammad Arif Butt, Ph.D.

(multi-bit register)(1-bit register)

• A register is actually a group of flip-flops, each flip flop capable of storing one bit
of information

• An n-bit register consists of a group of n flip-flops capable of storing n bits of
binary information. In this course we will focus on designing of 16-bit registers for
our computer

• A 16 bit register can be created from an array of 16 1-bit registers

Bit out

load

in

if load(t–1) then out(t) = in(t–1)
else out(t) = out(t–1)

. . .Bit

w-bit register

out

load

Binary cell (Bit)

in
w w

if load(t–1) then out(t) = in(t–1)
else out(t) = out(t–1)

Bit Bit

Figure 3.2 From single-bit to multi-bit registers. A multi-bit register of width w can be con-
structed from an array of w 1-bit chips. The operating functions of both chips is exactly the
same, except that the ‘‘¼’’ assignments are single-bit and multi-bit, respectively.

load

(0 to n–1)
direct access logic

Register 0

Register 1

Register n–1

RAMn

..

.
Register 2

in out

(word) (word)

address

Figure 3.3 RAM chip (conceptual). The width and length of the RAM can vary.

44 Chapter 3

(multi-bit register)

24Instructor: Muhammad Arif Butt, Ph.D.

• The API of the 16 bit Register chip is essentially the same as the 1-bit register,
except that the input and output pins are designed to handle multi-bit values

• The interface diagram and API of a 16-bit register is shown below
• The Bit and Register chips have exactly the same read/write behavior:

• Read: To read the contents of a register, we simply probe its output
• Write: To write a new data value d into a register, we put d in the in input and

set the load input to 1. In the next clock cycle, the register commits to the new
data value, and its output starts emitting d, and it will keep emitting this new
value forever till the time we decide to write a new value in it

Chip name: Register
Inputs: in[16], load
Outputs: out[16]
Function: if load(t) then

out(t+1) = in(t)
else
out(t+1) = out(t)

16 Bit Register API

25

HDL for 16-bit Register

Instructor: Muhammad Arif Butt, Ph.D.

/**
* 16-bit register:
* If load[t] == 1 then out[t+1] = in[t]
* else out does not change
*/
CHIP Register {

IN in[16], load;
OUT out[16];

PARTS:
Bit(in=in[0], load=load, out=out[0]);
Bit(in=in[1], load=load, out=out[1]);
Bit(in=in[2], load=load, out=out[2]);
Bit(in=in[3], load=load, out=out[3]);
. . . .

Bit(in=in[15], load=load, out=out[15]);
}

Register.hdl
Bit out

load

in

if load(t–1) then out(t) = in(t–1)
else out(t) = out(t–1)

. . .Bit

w-bit register

out

load

Binary cell (Bit)

in
w w

if load(t–1) then out(t) = in(t–1)
else out(t) = out(t–1)

Bit Bit

Figure 3.2 From single-bit to multi-bit registers. A multi-bit register of width w can be con-
structed from an array of w 1-bit chips. The operating functions of both chips is exactly the
same, except that the ‘‘¼’’ assignments are single-bit and multi-bit, respectively.

load

(0 to n–1)
direct access logic

Register 0

Register 1

Register n–1

RAMn

..

.
Register 2

in out

(word) (word)

address

Figure 3.3 RAM chip (conceptual). The width and length of the RAM can vary.

44 Chapter 3

CHIP Bit {
IN in, load;
OUT out;

PARTS:
Mux(a=sendBack, b=in, sel=load, out=MuxOut);
DFF(in=MuxOut, out=sendBack, out=out);

}

26

16-Bit Register Demo

Instructor: Muhammad Arif Butt, Ph.D.

Demo
Hardware Simulator

Interactive Testing
11/Register.hdl

27

Things To Do

Instructor: Muhammad Arif Butt, Ph.D.

Coming to office hours does NOT mean you are academically week!

• Practice writing HDL of the register chips and
verify their behavior by loading and running them
on the h/w ssimulator. You can download the .hdl,
.tst and .cmp files of above chips from the course
bitbucket repository:

https://bitbucket.org/arifpucit/coal-repo/

• Practice the different timing diagrams that we have used to describe
the behavior of D-flip flop and the single bit register on a piece of
paper by yourself.

