
Computer Organization & Assembly Language Programming

#include<stdio.h>
#include<stdlib.h>
int main(){
printf("Learning is fun with Arif\n");
exit(0);

}

 global main
SECTION .data

msg: db "Learning is fun with Arif", 0Ah, 0h
len_msg: equ $ - msg

SECTION .text
main:

mov rax,1
mov rdi,1
mov rsi,msg
mov rdx,len_msg
syscall
mov rax,60
mov rdi,0
syscall

0: b8 01 00 00 00
5: bf 01 00 00 00
a: 48 be 00 00 00 00 00
11: 00 00 00
14: ba 1b 00 00 00
19: 0f 05
1b: b8 3c 00 00 00
20: bf 00 00 00 00
25: 0f 05

Instructor: Muhammad Arif Butt, Ph.D.

Slides of first half of the course are adapted from:
https://www.nand2tetris.org
Download s/w tools required for first half of the course from the following link:
https://drive.google.com/file/d/0B9c0BdDJz6XpZUh3X2dPR1o0MUE/view

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	5 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	25

Solution: multiplex, using an instruction register

program

Memory

data

ALU

instruction	
register

data	
address

fetch /
execute
bit

mux

instruction

instruction	
address

Memory	
address	

input	

control	bus

address	bus

Memory	
output

address	bus (data	flows	not	shown,	to	minimize	clutter)

load	
on	
fetch

instruction

data

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	1 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	33

Interactive simulation (using Xor as an example)

Simulation process:
• Load the HDL file into the hardware simulator
• Enter values (0’s and 1’s) into the chip’s input pins (e.g. a and b)
• Evaluate the chip’s logic
• Inspect the resulting values of:

q Output pins (e.g. out)
q Internal pins (e.g. nota, notb, aAndNotb, notaAndb)

a

Not

Not

And

And

Or

b

out
nota

notb aAndNotb

notaAndb

Xor.hdl
CHIP Xor {

IN a, b;
OUT out;

PARTS:
Not (in=a, out=nota);
Not (in=b, out=notb);
And (a=a, b=notb, out=aAndNotb);
And (a=nota, b=b, out=notaAndb);
Or (a=aAndNotb, b=notaAndb, out=out);

}

CHIP Xor {
IN a, b;
OUT out;
PARTS:
Not(in=a, out=nota);
Not(in=b, out=notb);
And(a=nota, b=b, out=w1);
And(a=a, b=notb, out=w2);
Or(a=w1, b=w2, out=out);

}

@R1
D=M
@temp
M=D

0000000000000001
1111110000010000
0000000000010000
1110001100001000Lecture # 12

Design of Memory Chips

• Class Quiz

• Concept of Memory Hierarchy

• Multi-Byte Read/Write

• Design of Random Access Memory
– Read/Write Logic of RAM
– API of a RAM Chip
– HDL of 8 Words RAM
– HDL of 64 Words RAM
– HDL of 512 Words RAM
– HDL of 4K Words RAM
– HDL of 16K Words RAM

2

Today’s Agenda

Instructor: Muhammad Arif Butt, Ph.D.

3

Class Quiz:

Instructor: Muhammad Arif Butt, Ph.D.

load

in Bit outin Bit

1 2 3 4 5Time

out

in
1

0

1

0

1
0

Load

12

1-Bit Register Implementation

Instructor: Muhammad Arif Butt, Ph.D.
Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	3 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	23

1-bit register implementation

DFF

M
UX

load

DFFDFF

out(t) = in(t-1) if load(t-1) then out(t)=in(t-1)
else out(t)=out(t-1)

1-bit register (Bit)Flip-Flop

out(t) = out(t-1) ?
out(t) = in(t-1) ?

Invalid design

in out in out in out
1

time: 1 2 3 4 5

load

in
out

0

1

0

1

1
0

out:

in:
(example)

load:
(example)

4

Memory Overview

Instructor: Muhammad Arif Butt, Ph.D.

5

Stored Program Concept

Instructor: Muhammad Arif Butt, Ph.D.

ALU

Computer System

program

Memory CPU

registers

output

data

intput

CU

6

Memory Hierarchy

Instructor: Muhammad Arif Butt, Ph.D.

• Accessing a memory location is expensive, as we need to supply an address and
then read/write the contents of that location of memory. Moreover, moving the
memory contents into the CPU and vice versa also takes time

• Solution: Memory Hierarchy

�
�
�

ALU

Registers

�
�
�

�
�
�

CacheMemory
DiskMemory

Slower, Cheaper, Larger

Main MemoryCPU

7Instructor: Muhammad Arif Butt, Ph.D.

Memory Unit Example Size Typical Speed
Registers 16, 64-bit registers 1 nanoseconds

Cache memory 4 - 8 Megabytes (L1 and L2) 5-60 nanoseconds
Primary Storage 2 - 32+ Gigabytes 100-150 nanoseconds
Secondary Storage 500 Gigabytes – 4+ Terabytes 3-15 milliseconds

Access Times of Memory

8Instructor: Muhammad Arif Butt, Ph.D.

Decimal Term Abbreviation Value Binary Term Abbreviation Value %Larger

kilobyte KB 103 kibibyte KiB 210 2%
megabyte MB 106 mebibyte MiB 220 5%
Gigabyte GB 109 gibibyte GiB 230 7%
terabyte TB 1012 tebibyte TiB 240 10%`
petabyte PB 1015 pebibyte PiB 250 13%
exabyte EB 1018 exabibyte EiB 260 15%
zettabyte ZB 1021 zebibyte ZiB 270 18%
yottabyte YB 1024 yobibyte YiB 280 21%

Memory Sizes/Capacity

9

Random Access Memory (RAM)

Instructor: Muhammad Arif Butt, Ph.D.

• The computer’s main memory is also called the Random Access Memory,
because irrespective of the RAM size, every word gets selected
instantaneously, at more or less the same time

• It is also known as read/write memory as it allows CPU to read as well as
write data and instructions into it

• RAM is a microchip implemented using semiconductors. There are two
categories of RAM
Ø Dynamic RAM (DRAM): It is made up of memory cells where each cell is

composed of one capacitor and one transistor. DRAM must be refreshed
continually to store information. The refresh operation occurs automatically
thousands of times per second. DRAM is slower and less-expensive

Ø Static RAM (SRAM): It retains the data as long as power is provided to the
memory chip. It needs not be refreshed periodically. SRAM uses multiple
transistors for each memory cell. It does not use capacitor. SRAM is often
used as cache memory due to its high speed. SRAM is more expensive than
DRAM

10

Multi-Byte Ordering

Instructor: Muhammad Arif Butt, Ph.D.

• All 32 bit machines load and store 32 bits of data (word) with each
operation. The question is how are the bytes of a multi-byte variable
ordered in memory?

• Consider a 32 bit variable having a value of 0x01234567, that needs to be
stored at address 0x100

• There are two conventions that the h/w designers can follow:
Ø Big Endian: Most significant byte is written at the lowest address

byte (MSB first). Used by MIPS and Internet

Ø Little Endian: Least significant byte is written at the lowest address
byte (LSB first). Used by x86 and ARM

01 23 45 67

67 45 23 01

0x100 0x101 0x102 0x103

0x100 0x101 0x102 0x103

11

Designing
Random Access Memory

Instructor: Muhammad Arif Butt, Ph.D.

12

Design of RAM

Instructor: Muhammad Arif Butt, Ph.D.

• RAM is an array of n w-bit registers, equipped
with direct access circuitry. The number of
registers (n) and the width of each register (w)
are called the memory’s size and width
respectively

• In simple words, you can think of RAM as a
sequence of n addressable registers with
addresses 0 to n-1

• At any given time only one register in the RAM
is selected. It is this register whose value is
available on out during a read operation.
Similarly, it is this register whose contents will
be over written during a write operation

• Now to select a register we need its address.
Address width varies with the number of
registers/words in the RAM, e.g., for RAM8
the address size is 3 bits

k = Address bits = log2n

13Instructor: Muhammad Arif Butt, Ph.D.

Chip Name Size (n) Address bits (k)

RAM8 8 3

RAM64 64 6

RAM512 512 9

RAM4K 4096 12

RAM16K 16384 14

• At any given point of time: one register in the RAM is
selected, all the other registers are irrelevant

• Read: To read the contents of register number i,
• Set address = i
• Result: The RAM’s output pin out emits the state

of the register i. This is a combinational operation,
independent of the clock

• Write: To write a new data value d into register
number i,
• Set address = i
• Set in = d
• Set load = 1
• Result: The state of register i becomes d and form

next clock cycle onwards, out emits d

Read/Write Logic of RAM

14Instructor: Muhammad Arif Butt, Ph.D.

8-Register/words RAM

3

sel/address

3

sel/address

a
b
c
d
e
f
g
h

out

Register 0

Register 1

Register 2

Register 3

Register 4

Register 5

Register 6

Register 7

load DMux8Way Mux8Way16
16

16
out0
out1
out2
out3
out4
out5
out6
out7

Implementation tips:
• Memory of 8 registers, each 16 bit-wide. Out holds the value stored at the memory

location specified by address. If load==1, then the in value is loaded into the memory
location specified by address (the loaded value will be emitted to out from the next
time step onward)

• Feed the 16 bit i n value to all the registers, simultaneously
• Write: Use DMux8Way chip to select one of the eight registers specified by address
• Read: Use Mux8Way16 chip to select the 16 bit contents of register specified by

address on 16 bit out output

in
16

15Instructor: Muhammad Arif Butt, Ph.D.

CHIP RAM8 {
IN in[16], load, address[3];
OUT out[16];
PARTS:
DMux8Way(in=load, sel=address, a=load0, b=load1, c=load2, d=load3, e=load4, f=load5, g=load6, h=load7);

Register(in=in, load=load0, out=out0);
Register(in=in, load=load1, out=out1);
Register(in=in, load=load2, out=out2);
Register(in=in, load=load3, out=out3);
Register(in=in, load=load4, out=out4);
Register(in=in, load=load5, out=out5);
Register(in=in, load=load6, out=out6);
Register(in=in, load=load7, out=out7);

Mux8Way16(a=out0, b=out1, c=out2, d=out3, e=out4, f=out5, g=out6, h=out7, sel=address, out=out);
}

RAM8.hdl

8-Register/words RAM

CHIP Register {
IN in[16], load;
OUT out[16];

PARTS:
Bit(in=in[0], load=load, out=out[0]);
Bit(in=in[1], load=load, out=out[1]);
Bit(in=in[2], load=load, out=out[2]);
Bit(in=in[3], load=load, out=out[3]);

. . . .
Bit(in=in[15], load=load, out=out[15]);

}

Implementation tips:
• Memory of 8 registers, each 16 bit-wide. Out holds the value stored at the

memory location specified by address. If load==1, then the in value is loaded
into the memory location specified by address (the loaded value will be emitted
to out from the next time step onward)

• Feed the 16 bit i n value to all the registers, simultaneously
• Use DMux8Way chip to select one of the eight registers specified by address
• Use Mux8Way16 chip to select the 16 bit contents of register specified by

address on 16 bit out output

16

RAM8 Demo

Instructor: Muhammad Arif Butt, Ph.D.

Demo
Hardware Simulator

Interactive Testing
12/RAM8.hdl

17

Designing Larger Size RAM Chips

Instructor: Muhammad Arif Butt, Ph.D.

RAM8

RAM64

RAM512

Same technique
can be used to
implement RAM4K
and RAM16K

18Instructor: Muhammad Arif Butt, Ph.D.

CHIP RAM64 {
IN in[16], load, address[6];
OUT out[16];
PARTS:
DMux8Way(in=load, sel=address[3..5], a=load0, b=load1, c=load2, d=load3, e=load4, f=load5, g=load6, h=load7);

RAM8(in=in, load=load0, address=address[0..2], out=out0);
RAM8(in=in, load=load1, address=address[0..2], out=out1);
RAM8(in=in, load=load2, address=address[0..2], out=out2);
RAM8(in=in, load=load3, address=address[0..2], out=out3);
RAM8(in=in, load=load4, address=address[0..2], out=out4);
RAM8(in=in, load=load5, address=address[0..2], out=out5);
RAM8(in=in, load=load6, address=address[0..2], out=out6);
RAM8(in=in, load=load7, address=address[0..2], out=out7);

Mux8Way16(a=out0, b=out1, c=out2, d=out3, e=out4, f=out5, g=out6, h=out7, sel=address[3..5], out=out);
}

RAM64.hdl

64-Register/words RAM
Implementation tips:
• Memory of 64 registers, each 16 bit-wide. Out holds the value stored at the

memory location specified by address. If load==1, then the in value is loaded
into the memory location specified by address (the loaded value will be emitted
to out from the next time step onward)

• Feed the 16 bit i n value to all the registers, simultaneously
• Use DMux8Way chip to select one of the eight registers specified by address
• Use Mux8Way16 chip to select the 16 bit contents of register specified by

address on 16 bit out output

19Instructor: Muhammad Arif Butt, Ph.D.

CHIP RAM512 {
IN in[16], load, address[9];
OUT out[16];
PARTS:
DMux8Way(in=load, sel=address[6..8], a=load0, b=load1, c=load2, d=load3, e=load4, f=load5, g=load6, h=load7);

RAM64(in=in, load=load0, address=address[0..5], out=out0);
RAM64(in=in, load=load1, address=address[0..5], out=out1);
RAM64(in=in, load=load2, address=address[0..5], out=out2);
RAM64(in=in, load=load3, address=address[0..5], out=out3);
RAM64(in=in, load=load4, address=address[0..5], out=out4);
RAM64(in=in, load=load5, address=address[0..5], out=out5);
RAM64(in=in, load=load6, address=address[0..5], out=out6);
RAM64(in=in, load=load7, address=address[0..5], out=out7);

Mux8Way16(a=out0, b=out1, c=out2, d=out3, e=out4, f=out5, g=out6, h=out7, sel=address[6..8], out=out);
}

RAM512.hdl

512-Register/words RAM
Implementation tips:
• Memory of 512 registers, each 16 bit-wide. Out holds the value stored at the

memory location specified by address. If load==1, then the in value is loaded
into the memory location specified by address (the loaded value will be emitted
to out from the next time step onward)

• Feed the 16 bit i n value to all the registers, simultaneously
• Use DMux8Way chip to select one of the eight registers specified by address
• Use Mux8Way16 chip to select the 16 bit contents of register specified by

address on 16 bit out output

20Instructor: Muhammad Arif Butt, Ph.D.

CHIP RAM4K {
IN in[16], load, address[12];
OUT out[16];
PARTS:
DMux8Way(in=load, sel=address[9..11], a=load0, b=load1, c=load2, d=load3, e=load4, f=load5, g=load6, h=load7);

RAM512(in=in, load=load0, address=address[0..8], out=out0);
RAM512(in=in, load=load1, address=address[0..8], out=out1);
RAM512(in=in, load=load2, address=address[0..8], out=out2);
RAM512(in=in, load=load3, address=address[0..8], out=out3);
RAM512(in=in, load=load4, address=address[0..8], out=out4);
RAM512(in=in, load=load5, address=address[0..8], out=out5);
RAM512(in=in, load=load6, address=address[0..8], out=out6);
RAM512(in=in, load=load7, address=address[0..8], out=out7);

Mux8Way16(a=out0, b=out1, c=out2, d=out3, e=out4, f=out5, g=out6, h=out7, sel=address[9..11], out=out);
}

RAM4K.hdl

4K-Register/words RAM
Implementation tips:
• Memory of 4K registers, each 16 bit-wide. Out holds the value stored at the

memory location specified by address. If load==1, then the in value is loaded
into the memory location specified by address (the loaded value will be emitted
to out from the next time step onward)

• Feed the 16 bit i n value to all the registers, simultaneously
• Use DMux8Way chip to select one of the eight registers specified by address
• Use Mux8Way16 chip to select the 16 bit contents of register specified by

address on 16 bit out output

21Instructor: Muhammad Arif Butt, Ph.D.

CHIP RAM16K {
IN in[16], load, address[14];
OUT out[16];
PARTS:
DMux4Way(in=load, sel=address[12..13], a=load0, b=load1, c=load2, d=load3);

RAM4K(in=in, load=load0, address=address[0..11], out=out0);
RAM4K(in=in, load=load1, address=address[0..11], out=out1);
RAM4K(in=in, load=load2, address=address[0..11], out=out2);
RAM4K(in=in, load=load3, address=address[0..11], out=out3);

Mux4Way16(a=out0, b=out1, c=out2, d=out3, sel=address[12..13], out=out);
}

RAM16K.hdl

16K-Register/words RAM
Implementation tips:
• Memory of 16K registers, each 16 bit-wide. Out holds the value stored at the

memory location specified by address. If load==1, then the in value is loaded
into the memory location specified by address (the loaded value will be emitted
to out from the next time step onward)

• Feed the 16 bit i n value to all the registers, simultaneously
• Use DMux8Way chip to select one of the eight registers specified by address
• Use Mux8Way16 chip to select the 16 bit contents of register specified by

address on 16 bit out output

22

Things To Do

Instructor: Muhammad Arif Butt, Ph.D.

Coming to office hours does NOT mean you are academically week!

• Perform testing of the chips designed in today’s
session on the h/w simulator. You can download
the .hdl, .tst and .cmp files of above chips from
the course bitbucket repository:

https://bitbucket.org/arifpucit/coal-repo/
• Interested students should also try to implement

RAM chips having a word size other than 16 bits
and try running them on the simulator

