
1 Boolean Logic

Such simple things, And we make of them something so complex it defeats us, Almost.

—John Ashbery (b. 1927), American poet

Every digital device—be it a personal computer, a cellular telephone, or a network

router—is based on a set of chips designed to store and process information. Al-

though these chips come in different shapes and forms, they are all made from the

same building blocks: Elementary logic gates. The gates can be physically imple-

mented in many different materials and fabrication technologies, but their logical

behavior is consistent across all computers. In this chapter we start out with one

primitive logic gate—Nand—and build all the other logic gates from it. The result is

a rather standard set of gates, which will be later used to construct our computer’s

processing and storage chips. This will be done in chapters 2 and 3, respectively.

All the hardware chapters in the book, beginning with this one, have the same

structure. Each chapter focuses on a well-defined task, designed to construct or inte-

grate a certain family of chips. The prerequisite knowledge needed to approach this

task is provided in a brief Background section. The next section provides a complete

Specification of the chips’ abstractions, namely, the various services that they should

deliver, one way or another. Having presented the what, a subsequent Implemen-

tation section proposes guidelines and hints about how the chips can be actually

implemented. A Perspective section rounds up the chapter with concluding com-

ments about important topics that were left out from the discussion. Each chapter

ends with a technical Project section. This section gives step-by-step instructions for

actually building the chips on a personal computer, using the hardware simulator

supplied with the book.

This being the first hardware chapter in the book, the Background section is

somewhat lengthy, featuring a special section on hardware description and simulation

tools.



1.1 Background

This chapter focuses on the construction of a family of simple chips called Boolean

gates. Since Boolean gates are physical implementations of Boolean functions, we

start with a brief treatment of Boolean algebra. We then show how Boolean gates

implementing simple Boolean functions can be interconnected to deliver the func-

tionality of more complex chips. We conclude the background section with a descrip-

tion of how hardware design is actually done in practice, using software simulation

tools.

1.1.1 Boolean Algebra

Boolean algebra deals with Boolean (also called binary) values that are typically

labeled true/false, 1/0, yes/no, on/off, and so forth. We will use 1 and 0. A Boolean

function is a function that operates on binary inputs and returns binary outputs.

Since computer hardware is based on the representation and manipulation of binary

values, Boolean functions play a central role in the specification, construction, and

optimization of hardware architectures. Hence, the ability to formulate and analyze

Boolean functions is the first step toward constructing computer architectures.

Truth Table Representation The simplest way to specify a Boolean function is to

enumerate all the possible values of the function’s input variables, along with the

function’s output for each set of inputs. This is called the truth table representation of

the function, illustrated in figure 1.1.

The first three columns of figure 1.1 enumerate all the possible binary values of the

function’s variables. For each one of the 2n possible tuples v1 . . . vn (here n ¼ 3), the

last column gives the value of f ðv1 . . . vnÞ.

Boolean Expressions In addition to the truth table specification, a Boolean function

can also be specified using Boolean operations over its input variables. The basic

Boolean operators that are typically used are ‘‘And’’ (x And y is 1 exactly when both

x and y are 1) ‘‘Or’’ (x Or y is 1 exactly when either x or y or both are 1), and ‘‘Not’’

(Not x is 1 exactly when x is 0). We will use a common arithmetic-like notation for

these operations: x � y (or xy) means x And y, xþ y means x Or y, and x means

Not x.

To illustrate, the function defined in figure 1.1 is equivalently given by the Boolean

expression f ðx; y; zÞ ¼ ðxþ yÞ � z. For example, let us evaluate this expression on the
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inputs x ¼ 0, y ¼ 1, z ¼ 0 (third row in the table). Since y is 1, it follows that

xþ y ¼ 1 and thus 1 � 0 ¼ 1 � 1 ¼ 1. The complete verification of the equivalence

between the expression and the truth table is achieved by evaluating the expression

on each of the eight possible input combinations, verifying that it yields the same

value listed in the table’s right column.

Canonical Representation As it turns out, every Boolean function can be expressed

using at least one Boolean expression called the canonical representation. Starting

with the function’s truth table, we focus on all the rows in which the function has

value 1. For each such row, we construct a term created by And-ing together literals

(variables or their negations) that fix the values of all the row’s inputs. For example,

let us focus on the third row in figure 1.1, where the function’s value is 1. Since the

variable values in this row are x ¼ 0, y ¼ 1, z ¼ 0, we construct the term xyz. Fol-

lowing the same procedure, we construct the terms xyz and xyz for rows 5 and 7.

Now, if we Or-together all these terms (for all the rows where the function has value

1), we get a Boolean expression that is equivalent to the given truth table. Thus the

canonical representation of the Boolean function shown in figure 1.1 is f ðx; y; zÞ ¼
xyzþ xyzþ xyz. This construction leads to an important conclusion: Every Boolean

function, no matter how complex, can be expressed using three Boolean operators

only: And, Or, and Not.

Two-Input Boolean Functions An inspection of figure 1.1 reveals that the number of

Boolean functions that can be defined over n binary variables is 22
n

. For example,

the sixteen Boolean functions spanned by two variables are listed in figure 1.2. These

functions were constructed systematically, by enumerating all the possible 4-wise com-

binations of binary values in the four right columns. Each function has a conventional

x y z f ðx; y; zÞ
0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 0

Figure 1.1 Truth table representation of a Boolean function (example).
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name that seeks to describe its underlying operation. Here are some examples: The

name of the Nor function is shorthand for Not-Or: Take the Or of x and y, then

negate the result. The Xor function—shorthand for ‘‘exclusive or’’—returns 1 when

its two variables have opposing truth-values and 0 otherwise. Conversely, the

Equivalence function returns 1 when the two variables have identical truth-values.

The If-x-then-y function (also known as x ! y, or ‘‘x Implies y’’) returns 1 when x is

0 or when both x and y are 1. The other functions are self-explanatory.

The Nand function (as well as the Nor function) has an interesting theoretical

property: Each one of the operations And, Or, and Not can be constructed from it,

and it alone (e.g., x Or y ¼ ðx Nand xÞ Nand ðy Nand yÞ. And since every Boolean

function can be constructed from And, Or, and Not operations using the canonical

representation method, it follows that every Boolean function can be constructed

from Nand operations alone. This result has far-reaching practical implications:

Once we have in our disposal a physical device that implements Nand, we can use

many copies of this device (wired in a certain way) to implement in hardware any

Boolean function.

x 0 0 1 1
Function

y 0 1 0 1

Constant 0 0 0 0 0 0

And x � y 0 0 0 1

x And Not y x � y 0 0 1 0

x x 0 0 1 1

Not x And y x � y 0 1 0 0

y y 0 1 0 1

Xor x � yþ x � y 0 1 1 0

Or xþ y 0 1 1 1

Nor xþ y 1 0 0 0

Equivalence x � yþ x � y 1 0 0 1

Not y y 1 0 1 0

If y then x xþ y 1 0 1 1

Not x x 1 1 0 0

If x then y xþ y 1 1 0 1

Nand x � y 1 1 1 0

Constant 1 1 1 1 1 1

Figure 1.2 All the Boolean functions of two variables.
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1.1.2 Gate Logic

A gate is a physical device that implements a Boolean function. If a Boolean function

f operates on n variables and returns m binary results (in all our examples so far, m

was 1), the gate that implements f will have n input pins and m output pins. When we

put some values v1 . . . vn in the gate’s input pins, the gate’s ‘‘logic’’—its internal

structure—should compute and output f ðv1 . . . vnÞ. And just like complex Boolean

functions can be expressed in terms of simpler functions, complex gates are com-

posed from more elementary gates. The simplest gates of all are made from tiny

switching devices, called transistors, wired in a certain topology designed to effect the

overall gate functionality.

Although most digital computers today use electricity to represent and transmit

binary data from one gate to another, any alternative technology permitting switch-

ing and conducting capabilities can be employed. Indeed, during the last fifty years,

researchers have built many hardware implementations of Boolean functions, includ-

ing magnetic, optical, biological, hydraulic, and pneumatic mechanisms. Today, most

gates are implemented as transistors etched in silicon, packaged as chips. In this book

we use the words chip and gate interchangeably, tending to use the term gates for

simple chips.

The availability of alternative switching technology options, on the one hand, and

the observation that Boolean algebra can be used to abstract the behavior of any

such technology, on the other, is extremely important. Basically, it implies that

computer scientists don’t have to worry about physical things like electricity, circuits,

switches, relays, and power supply. Instead, computer scientists can be content with

the abstract notions of Boolean algebra and gate logic, trusting that someone else

(the physicists and electrical engineers—bless their souls) will figure out how to

actually realize them in hardware. Hence, a primitive gate (see figure 1.3) can be

viewed as a black box device that implements an elementary logical operation in one

way or another—we don’t care how. A hardware designer starts from such primitive

gates and designs more complicated functionality by interconnecting them, leading to

the construction of composite gates.

outAnd
b

a a

b outOr Notin out

Figure 1.3 Standard symbolic notation of some elementary logic gates.
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Primitive and Composite Gates Since all logic gates have the same input and out-

put semantics (0’s and 1’s), they can be chained together, creating composite gates of

arbitrary complexity. For example, suppose we are asked to implement the 3-way

Boolean function Andða; b; cÞ. Using Boolean algebra, we can begin by observing

that a � b � c ¼ ða � bÞ � c, or, using prefix notation, Andða; b; cÞ ¼ AndðAndða; bÞ; cÞ.
Next, we can use this result to construct the composite gate depicted in figure 1.4.

The construction described in figure 1.4 is a simple example of gate logic, also

called logic design. Simply put, logic design is the art of interconnecting gates in

order to implement more complex functionality, leading to the notion of composite

gates. Since composite gates are themselves realizations of (possibly complex)

Boolean functions, their ‘‘outside appearance’’ (e.g., left side of figure 1.4) looks just

like that of primitive gates. At the same time, their internal structure can be rather

complex.

We see that any given logic gate can be viewed from two different perspectives:

external and internal. The right-hand side of figure 1.4 gives the gate’s internal

architecture, or implementation, whereas the left side shows only the gate interface,

namely, the input and output pins that it exposes to the outside world. The former is

relevant only to the gate designer, whereas the latter is the right level of detail for

other designers who wish to use the gate as an abstract off-the-shelf component,

without paying attention to its internal structure.

Let us consider another logic design example—that of a Xor gate. As discussed

before, Xorða; bÞ is 1 exactly when either a is 1 and b is 0, or when a is 0 and b is

1. Said otherwise, Xorða; bÞ ¼ OrðAndða;NotðbÞÞ;AndðNotðaÞ; bÞÞ. This definition

leads to the logic design shown in figure 1.5.

Note that the gate interface is unique: There is only one way to describe it, and this

is normally done using a truth table, a Boolean expression, or some verbal specifica-

out
a
b And
c

If a=b=c=1 then out=1
else out=0

a
And

b

And
c

out

Gate implementationGate interface

Figure 1.4 Composite implementation of a three-way And gate. The rectangle on the right
defines the conceptual boundaries of the gate interface.
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tion. This interface, however, can be realized using many different implementations,

some of which will be better than others in terms of cost, speed, and simplicity. For

example, the Xor function can be implemented using four, rather than five, And, Or,

and Not gates. Thus, from a functional standpoint, the fundamental requirement of

logic design is that the gate implementation will realize its stated interface, in one way

or another. From an efficiency standpoint, the general rule is to try to do more with

less, that is, use as few gates as possible.

To sum up, the art of logic design can be described as follows: Given a gate spec-

ification (interface), find an efficient way to implement it using other gates that

were already implemented. This, in a nutshell, is what we will do in the rest of this

chapter.

1.1.3 Actual Hardware Construction

Having described the logic of composing complex gates from simpler ones, we are

now in a position to discuss how gates are actually built. Let us start with an inten-

tionally naı̈ve example.

Suppose we open a chip fabrication shop in our home garage. Our first contract is

to build a hundred Xor gates. Using the order’s downpayment, we purchase a sol-

dering gun, a roll of copper wire, and three bins labeled ‘‘And gates,’’ ‘‘Or gates,’’

and ‘‘Not gates,’’ each containing many identical copies of these elementary logic

gates. Each of these gates is sealed in a plastic casing that exposes some input and

output pins, as well as a power supply plug. To get started, we pin figure 1.5 to our

garage wall and proceed to realize it using our hardware. First, we take two And

gates, two Not gates, and one Or gate, and mount them on a board according to the

Xor
a

b
out

0     0       0
0     1       1
1     0       1
1     1       0

a     b      out

And

And

Or out

a

b

Figure 1.5 Xor gate, along with a possible implementation.
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figure’s layout. Next, we connect the chips to one another by running copper wires

among them and by soldering the wire ends to the respective input/output pins.

Now, if we follow the gate diagram carefully, we will end up having three exposed

wire ends. We then solder a pin to each one of these wire ends, seal the entire device

(except for the three pins) in a plastic casing, and label it ‘‘Xor.’’ We can repeat this

assembly process many times over. At the end of the day, we can store all the

chips that we’ve built in a new bin and label it ‘‘Xor gates.’’ If we (or other people)

are asked to construct some other chips in the future, we’ll be able to use these Xor

gates as elementary building blocks, just as we used the And, Or, and Not gates

before.

As the reader has probably sensed, the garage approach to chip production leaves

much to be desired. For starters, there is no guarantee that the given chip diagram is

correct. Although we can prove correctness in simple cases like Xor, we cannot do so

in many realistically complex chips. Thus, we must settle for empirical testing: Build

the chip, connect it to a power supply, activate and deactivate the input pins in vari-

ous configurations, and hope that the chip outputs will agree with its specifications. If

the chip fails to deliver the desired outputs, we will have to tinker with its physical

structure—a rather messy affair. Further, even if we will come up with the right de-

sign, replicating the chip assembly process many times over will be a time-consuming

and error-prone affair. There must be a better way!

1.1.4 Hardware Description Language (HDL)

Today, hardware designers no longer build anything with their bare hands. Instead,

they plan and optimize the chip architecture on a computer workstation, using

structured modeling formalisms like Hardware Description Language, or HDL (also

known as VHDL, where V stands for Virtual ). The designer specifies the chip struc-

ture by writing an HDL program, which is then subjected to a rigorous battery of

tests. These tests are carried out virtually, using computer simulation: A special

software tool, called a hardware simulator, takes the HDL program as input and

builds an image of the modeled chip in memory. Next, the designer can instruct the

simulator to test the virtual chip on various sets of inputs, generating simulated chip

outputs. The outputs can then be compared to the desired results, as mandated by

the client who ordered the chip built.

In addition to testing the chip’s correctness, the hardware designer will typi-

cally be interested in a variety of parameters such as speed of computation, energy

consumption, and the overall cost implied by the chip design. All these param-
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eters can be simulated and quantified by the hardware simulator, helping the de-

signer optimize the design until the simulated chip delivers desired cost/performance

levels.

Thus, using HDL, one can completely plan, debug, and optimize the entire chip

before a single penny is spent on actual production. When the HDL program is

deemed complete, that is, when the performance of the simulated chip satisfies the

client who ordered it, the HDL program can become the blueprint from which many

copies of the physical chip can be stamped in silicon. This final step in the chip

life cycle—from an optimized HDL program to mass production—is typically out-

sourced to companies that specialize in chip fabrication, using one switching tech-

nology or another.

Example: Building a Xor Gate As we have seen in figures 1.2 and 1.5, one way to

define exclusive or is Xorða; bÞ ¼ OrðAndða;NotðbÞÞ;AndðNotðaÞ; bÞÞ. This logic can
be expressed either graphically, as a gate diagram, or textually, as an HDL program.

The latter program is written in the HDL variant used throughout this book, defined

in appendix A. See figure 1.6 for the details.

Explanation An HDL definition of a chip consists of a header section and a parts

section. The header section specifies the chip interface, namely the chip name and the

names of its input and output pins. The parts section describes the names and topol-

ogy of all the lower-level parts (other chips) from which this chip is constructed. Each

part is represented by a statement that specifies the part name and the way it is con-

nected to other parts in the design. Note that in order to write such statements legi-

bly, the HDL programmer must have a complete documentation of the underlying

parts’ interfaces. For example, figure 1.6 assumes that the input and output pins of

the Not gate are labeled in and out, and those of And and Or are labeled a, b and

out. This API-type information is not obvious, and one must have access to it before

one can plug the chip parts into the present code.

Inter-part connections are described by creating and connecting internal pins,

as needed. For example, consider the bottom of the gate diagram, where the output

of a Not gate is piped into the input of a subsequent And gate. The HDL code

describes this connection by the pair of statements Not(...,out=nota) and

And(a=nota,...). The first statement creates an internal pin (outbound wire)

named nota, feeding out into it. The second statement feeds the value of nota

into the a input of an And gate. Note that pins may have an unlimited fan out.

For example, in figure 1.6, each input is simultaneously fed into two gates. In gate
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diagrams, multiple connections are described using forks. In HDL, the existence of

forks is implied by the code.

Testing Rigorous quality assurance mandates that chips be tested in a specific, rep-

licable, and well-documented fashion. With that in mind, hardware simulators are

usually designed to run test scripts, written in some scripting language. For example,

the test script in figure 1.6 is written in the scripting language understood by the

hardware simulator supplied with the book. This scripting language is described fully

in appendix B.

Let us give a brief description of the test script from figure 1.6. The first two lines

of the test script instruct the simulator to load the Xor.hdl program and get ready to

b

a

b

a

a

And

And

Or out

a

b

in

in

notb

nota

w1

w2

out

out

out

out

b
out

HDL program (Xor.hdl) Test script (Xor.tst) Output file (Xor.out)

/* Xor (exclusive or) gate:

If a<>b out=1 else out=0. */

CHIP Xor {

IN a, b;

OUT out;

PARTS:

Not(in=a, out=nota);

Not(in=b, out=notb);

And(a=a, b=notb, out=w1);

And(a=nota, b=b, out=w2);

Or(a=w1, b=w2, out=out);

}

load Xor.hdl,

output-list a, b, out;

set a 0, set b 0,

eval, output;

set a 0, set b 1,

eval, output;

set a 1, set b 0,

eval, output;

set a 1, set b 1,

eval, output;

a b out

0 0 0

0 1 1

1 0 1

1 1 0

Figure 1.6 HDL implementation of a Xor gate.
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print the values of selected variables. Next, the script lists a series of testing scenarios,

designed to simulate the various contingencies under which the Xor chip will have to

operate in ‘‘real-life’’ situations. In each scenario, the script instructs the simulator to

bind the chip inputs to certain data values, compute the resulting output, and record

the test results in a designated output file. In the case of simple gates like Xor, one

can write an exhaustive test script that enumerates all the possible input values of the

gate. The resulting output file (right side of figure 1.6) can then be viewed as a com-

plete empirical proof that the chip is well designed. The luxury of such certitude is

not feasible in more complex chips, as we will see later.

1.1.5 Hardware Simulation

Since HDL is a hardware construction language, the process of writing and debug-

ging HDL programs is quite similar to software development. The main difference is

that instead of writing code in a language like Java, we write it in HDL, and instead

of using a compiler to translate and test the code, we use a hardware simulator. The

hardware simulator is a computer program that knows how to parse and interpret

HDL code, turn it into an executable representation, and test it according to the

specifications of a given test script. There exist many commercial hardware simu-

lators on the market, and these vary greatly in terms of cost, complexity, and ease of

use. Together with this book we provide a simple (and free!) hardware simulator

that is sufficiently powerful to support sophisticated hardware design projects. In

particular, the simulator provides all the necessary tools for building, testing, and

integrating all the chips presented in the book, leading to the construction of a

general-purpose computer. Figure 1.7 illustrates a typical chip simulation session.

1.2 Specification

This section specifies a typical set of gates, each designed to carry out a common

Boolean operation. These gates will be used in the chapters that follow to construct

the full architecture of a typical modern computer. Our starting point is a single

primitive Nand gate, from which all other gates will be derived recursively. Note that

we provide only the gates’ specifications, or interfaces, delaying implementation

details until a subsequent section. Readers who wish to construct the specified gates

in HDL are encouraged to do so, referring to appendix A as needed. All the gates

can be built and simulated on a personal computer, using the hardware simulator

supplied with the book.
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test 
script

HDL 
program

current pin 
values

simulator
controls

output file

typical 
simulation step

Figure 1.7 A screen shot of simulating an Xor chip on the hardware simulator. The simulator
state is shown just after the test script has completed running. The pin values correspond to the
last simulation step (a ¼ b ¼ 1). Note that the output file generated by the simulation is con-
sistent with the Xor truth table, indicating that the loaded HDL program delivers a correct
Xor functionality. The compare file, not shown in the figure and typically specified by the
chip’s client, has exactly the same structure and contents as that of the output file. The fact
that the two files agree with each other is evident from the status message displayed at the
bottom of the screen.
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1.2.1 The Nand Gate

The starting point of our computer architecture is the Nand gate, from which all

other gates and chips are built. The Nand gate is designed to compute the following

Boolean function:

a b Nandða; bÞ
0 0 1

0 1 1

1 0 1

1 1 0

Throughout the book, we use ‘‘chip API boxes’’ to specify chips. For each chip, the

API specifies the chip name, the names of its input and output pins, the function or

operation that the chip effects, and an optional comment.

Chip name: Nand

Inputs: a, b

Outputs: out

Function: If a=b=1 then out=0 else out=1

Comment: This gate is considered primitive and thus there is

no need to implement it.

1.2.2 Basic Logic Gates

Some of the logic gates presented here are typically referred to as ‘‘elementary’’ or

‘‘basic.’’ At the same time, every one of them can be composed from Nand gates

alone. Therefore, they need not be viewed as primitive.

Not The single-input Not gate, also known as ‘‘converter,’’ converts its input from

0 to 1 and vice versa. The gate API is as follows:

Chip name: Not

Inputs: in

Outputs: out

Function: If in=0 then out=1 else out=0.
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And The And function returns 1 when both its inputs are 1, and 0 otherwise.

Chip name: And

Inputs: a, b

Outputs: out

Function: If a=b=1 then out=1 else out=0.

Or The Or function returns 1 when at least one of its inputs is 1, and 0 otherwise.

Chip name: Or

Inputs: a, b

Outputs: out

Function: If a=b=0 then out=0 else out=1.

Xor The Xor function, also known as ‘‘exclusive or,’’ returns 1 when its two inputs

have opposing values, and 0 otherwise.

Chip name: Xor

Inputs: a, b

Outputs: out

Function: If a=/b then out=1 else out=0.

Multiplexor A multiplexor (figure 1.8) is a three-input gate that uses one of the

inputs, called ‘‘selection bit,’’ to select and output one of the other two inputs, called

‘‘data bits.’’ Thus, a better name for this device might have been selector. The

name multiplexor was adopted from communications systems, where similar

devices are used to serialize (multiplex) several input signals over a single output

wire.

Chip name: Mux

Inputs: a, b, sel

Outputs: out

Function: If sel=0 then out=a else out=b.
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Demultiplexor A demultiplexor (figure 1.9) performs the opposite function of a

multiplexor: It takes a single input and channels it to one of two possible outputs

according to a selector bit that specifies which output to chose.

Chip name: DMux

Inputs: in, sel

Outputs: a, b

Function: If sel=0 then {a=in, b=0} else {a=0, b=in}.

1.2.3 Multi-Bit Versions of Basic Gates

Computer hardware is typically designed to operate on multi-bit arrays called

‘‘buses.’’ For example, a basic requirement of a 32-bit computer is to be able to

compute (bit-wise) an And function on two given 32-bit buses. To implement this

operation, we can build an array of 32 binary And gates, each operating separately

a b sel out sel out

0 0 0 0 0 a

0 1 0 0 1 b

1 0 0 1

1 1 0 1

0 0 1 0

0 1 1 1

1 0 1 0

1 1 1 1

a

b

sel

outMux

Figure 1.8 Multiplexor. The table at the top right is an abbreviated version of the truth table
on the left.

sel a b

0 in 0

1 0 in

a

b

sel

in DMux

Figure 1.9 Demultiplexor.
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on a pair of bits. In order to enclose all this logic in one package, we can encapsulate

the gates array in a single chip interface consisting of two 32-bit input buses and one

32-bit output bus.

This section describes a typical set of such multi-bit logic gates, as needed for the

construction of a typical 16-bit computer. We note in passing that the architecture of

n-bit logic gates is basically the same irrespective of n’s value.

When referring to individual bits in a bus, it is common to use an array syntax.

For example, to refer to individual bits in a 16-bit bus named data, we use the no-

tation data[0], data[1],..., data[15].

Multi-Bit Not An n-bit Not gate applies the Boolean operation Not to every one of

the bits in its n-bit input bus:

Chip name: Not16

Inputs: in[16] // a 16-bit pin

Outputs: out[16]

Function: For i=0..15 out[i]=Not(in[i]).

Multi-Bit And An n-bit And gate applies the Boolean operation And to every one

of the n bit-pairs arrayed in its two n-bit input buses:

Chip name: And16

Inputs: a[16], b[16]

Outputs: out[16]

Function: For i=0..15 out[i]=And(a[i],b[i]).

Multi-Bit Or An n-bit Or gate applies the Boolean operation Or to every one of the

n bit-pairs arrayed in its two n-bit input buses:

Chip name: Or16

Inputs: a[16], b[16]

Outputs: out[16]

Function: For i=0..15 out[i]=Or(a[i],b[i]).
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Multi-Bit Multiplexor An n-bit multiplexor is exactly the same as the binary multi-

plexor described in figure 1.8, except that the two inputs are each n-bit wide; the

selector is a single bit.

Chip name: Mux16

Inputs: a[16], b[16], sel

Outputs: out[16]

Function: If sel=0 then for i=0..15 out[i]=a[i]

else for i=0..15 out[i]=b[i].

1.2.4 Multi-Way Versions of Basic Gates

Many 2-way logic gates that accept two inputs have natural generalization to multi-

way variants that accept an arbitrary number of inputs. This section describes a set

of multi-way gates that will be used subsequently in various chips in our computer

architecture. Similar generalizations can be developed for other architectures, as

needed.

Multi-Way Or An n-way Or gate outputs 1 when at least one of its n bit inputs is 1,

and 0 otherwise. Here is the 8-way variant of this gate:

Chip name: Or8Way

Inputs: in[8]

Outputs: out

Function: out=Or(in[0],in[1],...,in[7]).

Multi-Way/Multi-Bit Multiplexor An m-way n-bit multiplexor selects one of m n-

bit input buses and outputs it to a single n-bit output bus. The selection is speci-

fied by a set of k control bits, where k ¼ log2 m. Figure 1.10 depicts a typical

example.

The computer platform that we develop in this book requires two variations of this

chip: A 4-way 16-bit multiplexor and an 8-way 16-bit multiplexor:
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Chip name: Mux4Way16

Inputs: a[16], b[16], c[16], d[16], sel[2]

Outputs: out[16]

Function: If sel=00 then out=a else if sel=01 then out=b

else if sel=10 then out=c else if sel=11 then out=d

Comment: The assignment operations mentioned above are all

16-bit. For example, "out=a" means "for i=0..15

out[i]=a[i]".

Chip name: Mux8Way16

Inputs: a[16],b[16],c[16],d[16],e[16],f[16],g[16],h[16],

sel[3]

Outputs: out[16]

Function: If sel=000 then out=a else if sel=001 then out=b

else if sel=010 out=c ... else if sel=111 then out=h

Comment: The assignment operations mentioned above are all

16-bit. For example, "out=a" means "for i=0..15

out[i]=a[i]".

Multi-Way/Multi-Bit Demultiplexor An m-way n-bit demultiplexor (figure 1.11)

channels a single n-bit input into one of m possible n-bit outputs. The selection is

specified by a set of k control bits, where k ¼ log2 m.

The specific computer platform that we will build requires two variations of this

chip: A 4-way 1-bit demultiplexor and an 8-way 1-bit multiplexor, as follows.

sel[1] sel[0] out

0 0 a

0 1 b

1 0 c

1 1 d

a

out
b

c
4-way
Mux

sel[0]sel[1]

d a,b,c,d and
out are each
16-bit wide

Figure 1.10 4-way multiplexor. The width of the input and output buses may vary.
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Chip name: DMux4Way

Inputs: in, sel[2]

Outputs: a, b, c, d

Function: If sel=00 then {a=in, b=c=d=0}

else if sel=01 then {b=in, a=c=d=0}

else if sel=10 then {c=in, a=b=d=0}

else if sel=11 then {d=in, a=b=c=0}.

Chip name: DMux8Way

Inputs: in, sel[3]

Outputs: a, b, c, d, e, f, g, h

Function: If sel=000 then {a=in, b=c=d=e=f=g=h=0}

else if sel=001 then {b=in, a=c=d=e=f=g=h=0}

else if sel=010 ...

...

else if sel=111 then {h=in, a=b=c=d=e=f=g=0}.

1.3 Implementation

Similar to the role of axioms in mathematics, primitive gates provide a set of ele-

mentary building blocks from which everything else can be built. Operationally,

primitive gates have an ‘‘off-the-shelf ’’ implementation that is supplied externally.

Thus, they can be used in the construction of other gates and chips without worrying

about their internal design. In the computer architecture that we are now beginning

sel[1] sel[0] a b c d

0 0 in 0 0 0

0 1 0 in 0 0

1 0 0 0 in 0

1 1 0 0 0 in

in
4-way
DMux

sel[0]sel[1]

Figure 1.11 4-way demultiplexor.
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to build, we have chosen to base all the hardware on one primitive gate only: Nand.

We now turn to outlining the first stage of this bottom-up hardware construction

project, one gate at a time.

Our implementation guidelines are intentionally partial, since we want you to dis-

cover the actual gate architectures yourself. We reiterate that each gate can be imple-

mented in more than one way; the simpler the implementation, the better.

Not: The implementation of a unary Not gate from a binary Nand gate is simple.

Tip: Think positive.

And: Once again, the gate implementation is simple. Tip: Think negative.

Or/Xor: These functions can be defined in terms of some of the Boolean functions

implemented previously, using some simple Boolean manipulations. Thus, the re-

spective gates can be built using previously built gates.

Multiplexor/Demultiplexor: Likewise, these gates can be built using previously built

gates.

Multi-Bit Not/And/Or Gates: Since we already know how to implement the ele-

mentary versions of these gates, the implementation of their n-ary versions is simply

a matter of constructing arrays of n elementary gates, having each gate operate sep-

arately on its bit inputs. This implementation task is rather boring, but it will carry

its weight when these multi-bit gates are used in more complex chips, as described in

subsequent chapters.

Multi-Bit Multiplexor: The implementation of an n-ary multiplexor is simply a

matter of feeding the same selection bit to every one of n binary multiplexors. Again,

a boring task resulting in a very useful chip.

Multi-Way Gates: Implementation tip: Think forks.

1.4 Perspective

This chapter described the first steps taken in an applied digital design project. In the

next chapter we will build more complicated functionality using the gates built here.
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Although we have chosen to use Nand as our basic building block, other approaches

are possible. For example, one can build a complete computer platform using Nor

gates alone, or, alternatively, a combination of And, Or, and Not gates. These con-

structive approaches to logic design are theoretically equivalent, just as all theorems

in geometry can be founded on different sets of axioms as alternative points of de-

parture. The theory and practice of such constructions are covered in standard text-

books about digital design or logic design.

Throughout the chapter, we paid no attention to efficiency considerations such as

the number of elementary gates used in constructing a composite gate or the number

of wire crossovers implied by the design. Such considerations are critically important

in practice, and a great deal of computer science and electrical engineering expertise

focuses on optimizing them. Another issue we did not address at all is the physical

implementation of gates and chips using the laws of physics, for example, the role

of transistors embedded in silicon. There are of course several such implementation

options, each having its own characteristics (speed, power requirements, production

cost, etc.). Any nontrivial coverage of these issues requires some background in

electronics and physics.

1.5 Project

Objective Implement all the logic gates presented in the chapter. The only building

blocks that you can use are primitive Nand gates and the composite gates that you

will gradually build on top of them.

Resources The only tool that you need for this project is the hardware simulator

supplied with the book. All the chips should be implemented in the HDL language

specified in appendix A. For each one of the chips mentioned in the chapter, we

provide a skeletal .hdl program (text file) with a missing implementation part. In

addition, for each chip we provide a .tst script file that tells the hardware simulator

how to test it, along with the correct output file that this script should generate,

called .cmp or ‘‘compare file.’’ Your job is to complete the missing implementation

parts of the supplied .hdl programs.

Contract When loaded into the hardware simulator, your chip design (modified

.hdl program), tested on the supplied .tst file, should produce the outputs listed in

the supplied .cmp file. If that is not the case, the simulator will let you know.
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Tips The Nand gate is considered primitive and thus there is no need to build it:

Whenever you use Nand in one of your HDL programs, the simulator will auto-

matically invoke its built-in tools/builtIn/Nand.hdl implementation. We rec-

ommend implementing the other gates in this project in the order in which they

appear in the chapter. However, since the builtIn directory features working ver-

sions of all the chips described in the book, you can always use these chips without

defining them first: The simulator will automatically use their built-in versions.

For example, consider the skeletal Mux.hdl program supplied in this project.

Suppose that for one reason or another you did not complete this program’s im-

plementation, but you still want to use Mux gates as internal parts in other chip

designs. This is not a problem, thanks to the following convention. If our simula-

tor fails to find a Mux.hdl file in the current directory, it automatically invokes a

built-in Mux implementation, pre-supplied with the simulator’s software. This built-

in implementation—a Java class stored in the builtIn directory—has the same in-

terface and functionality as those of the Mux gate described in the book. Thus, if you

want the simulator to ignore one or more of your chip implementations, simply move

the corresponding .hdl files out of the current directory.

Steps We recommend proceeding in the following order:

0. The hardware simulator needed for this project is available in the tools direc-

tory of the book’s software suite.

1. Read appendix A, sections A1–A6 only.

2. Go through the hardware simulator tutorial, parts I, II, and III only.

3. Build and simulate all the chips specified in the projects/01 directory.
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2 Boolean Arithmetic

Counting is the religion of this generation, its hope and salvation.

—Gertrude Stein (1874–1946)

In this chapter we build gate logic designs that represent numbers and perform

arithmetic operations on them. Our starting point is the set of logic gates built in

chapter 1, and our ending point is a fully functional Arithmetic Logical Unit. The

ALU is the centerpiece chip that executes all the arithmetic and logical operations

performed by the computer. Hence, building the ALU functionality is an important

step toward understanding how the Central Processing Unit (CPU) and the overall

computer work.

As usual, we approach this task gradually. The first section gives a brief Back-

ground on how binary codes and Boolean arithmetic can be used, respectively, to

represent and add signed numbers. The Specification section describes a succession of

adder chips, designed to add two bits, three bits, and pairs of n-bit binary numbers.

This sets the stage for the ALU specification, which is based on a sophisticated yet

simple logic design. The Implementation and Project sections provide tips and

guidelines on how to build the adder chips and the ALU on a personal computer,

using the hardware simulator supplied with the book.

Binary addition is a simple operation that runs deep. Remarkably, most of the

operations performed by digital computers can be reduced to elementary additions of

binary numbers. Therefore, constructive understanding of binary addition holds the

key to the implementation of numerous computer operations that depend on it, one

way or another.



2.1 Background

Binary Numbers Unlike the decimal system, which is founded on base 10, the bi-

nary system is founded on base 2. When we are given a certain binary pattern, say

‘‘10011,’’ and we are told that this pattern is supposed to represent an integer num-

ber, the decimal value of this number is computed by convention as follows:

ð10011Þtwo ¼ 1 � 24 þ 0 � 23 þ 0 � 22 þ 1 � 21 þ 1 � 20 ¼ 19 ð1Þ
In general, let x ¼ xnxn�1 . . . x0 be a string of digits. The value of x in base b, denoted

ðxÞb, is defined as follows:

ðxnxn�1 . . . x0Þb ¼
Xn

i¼0

xi � bi ð2Þ

The reader can verify that in the case of ð10011Þtwo, rule (2) reduces to calculation (1).

The result of calculation (1) happens to be 19. Thus, when we press the keyboard

keys labeled ‘1’, ‘9’ and ENTER while running, say, a spreadsheet program, what ends

up in some register in the computer’s memory is the binary code 10011. More pre-

cisely, if the computer happens to be a 32-bit machine, what gets stored in the regis-

ter is the bit pattern 00000000000000000000000000010011.

Binary Addition A pair of binary numbers can be added digit by digit from right to

left, according to the same elementary school method used in decimal addition. First,

we add the two right-most digits, also called the least significant bits (LSB) of the two

binary numbers. Next, we add the resulting carry bit (which is either 0 or 1) to the

sum of the next pair of bits up the significance ladder. We continue the process until

the two most significant bits (MSB) are added. If the last bit-wise addition generates a

carry of 1, we can report overflow; otherwise, the addition completes successfully:

0 0 0 1 (carry) 1 1 1 1

1 0 0 1 x 1 0 1 1

þ 0 1 0 1 y þ 0 1 1 1

0 1 1 1 0 xþ y 1 0 0 1 0

no overflow overflow

We see that computer hardware for binary addition of two n-bit numbers can be built

from logic gates designed to calculate the sum of three bits (pair of bits plus carry bit).

The transfer of the resulting carry bit forward to the addition of the next significant

pair of bits can be easily accomplished by proper wiring of the 3-bit adder gates.
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Signed Binary Numbers A binary system with n digits can generate a set of 2n dif-

ferent bit patterns. If we have to represent signed numbers in binary code, a natural

solution is to split this space into two equal subsets. One subset of codes is assigned

to represent positive numbers, and the other negative numbers. Ideally, the coding

scheme should be chosen in such a way that the introduction of signed numbers

would complicate the hardware implementation as little as possible.

This challenge has led to the development of several coding schemes for repre-

senting signed numbers in binary code. The method used today by almost all com-

puters is called the 2’s complement method, also known as radix complement. In a

binary system with n digits, the 2’s complement of the number x is defined as follows:

x ¼ 2n � x if x0 0

0 otherwise

�

For example, in a 5-bit binary system, the 2’s complement representation of �2

or ‘‘minusð00010Þtwo’’ is 25 � ð00010Þtwo ¼ ð32Þten � ð2Þten ¼ ð30Þten ¼ ð11110Þtwo. To
check the calculation, the reader can verify that ð00010Þtwo þ ð11110Þtwo ¼ ð00000Þtwo.
Note that in the latter computation, the sum is actually ð100000Þtwo, but since we are
dealing with a 5-bit binary system, the left-most sixth bit is simply ignored. As a rule,

when the 2’s complement method is applied to n-bit numbers, xþ ð�xÞ always sums

up to 2n (i.e., 1 followed by n 0’s)—a property that gives the method its name. Figure

2.1 illustrates a 4-bit binary system with the 2’s complement method.

An inspection of figure 2.1 suggests that an n-bit binary system with 2’s comple-

ment representation has the following properties:

Positive

numbers

Negative

numbers

0 0000

1 0001 1111 �1

2 0010 1110 �2

3 0011 1101 �3

4 0100 1100 �4

5 0101 1011 �5

6 0110 1010 �6

7 0111 1001 �7

1000 �8

Figure 2.1 2’s complement representation of signed numbers in a 4-bit binary system.
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m The system can code a total of 2n signed numbers, of which the maximal and

minimal numbers are 2n�1 � 1 and �2n�1, respectively.

m The codes of all positive numbers begin with a 0.

m The codes of all negative numbers begin with a 1.

m To obtain the code of �x from the code of x, leave all the trailing (least signifi-

cant) 0’s and the first least significant 1 intact, then flip all the remaining bits (convert

0’s to 1’s and vice versa). An equivalent shortcut, which is easier to implement in

hardware, is to flip all the bits of x and add 1 to the result.

A particularly attractive feature of this representation is that addition of any two

signed numbers in 2’s complement is exactly the same as addition of positive num-

bers. Consider, for example, the addition operation ð�2Þ þ ð�3Þ. Using 2’s comple-

ment (in a 4-bit representation), we have to add, in binary, ð1110Þtwo þ ð1101Þtwo.
Without paying any attention to which numbers (positive or negative) these codes

represent, bit-wise addition will yield 1011 (after throwing away the overflow bit). As

figure 2.1 shows, this indeed is the 2’s complement representation of �5.

In short, we see that the 2’s complement method facilitates the addition of any

two signed numbers without requiring special hardware beyond that needed for sim-

ple bit-wise addition. What about subtraction? Recall that in the 2’s complement

method, the arithmetic negation of a signed number x, that is, computing �x, is

achieved by negating all the bits of x and adding 1 to the result. Thus subtraction can

be easily handled by x� y ¼ xþ ð�yÞ. Once again, hardware complexity is kept to

a minimum.

The material implications of these theoretical results are significant. Basically, they

imply that a single chip, called Arithmetic Logical Unit, can be used to encapsulate

all the basic arithmetic and logical operators performed in hardware. We now turn to

specify one such ALU, beginning with the specification of an adder chip.

2.2 Specification

2.2.1 Adders

We present a hierarchy of three adders, leading to a multi-bit adder chip:

m Half-adder: designed to add two bits

m Full-adder: designed to add three bits

m Adder: designed to add two n-bit numbers
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We also present a special-purpose adder, called incrementer, designed to add 1 to a

given number.

Half-Adder The first step on our way to adding binary numbers is to be able to add

two bits. Let us call the least significant bit of the addition sum, and the most signif-

icant bit carry. Figure 2.2 presents a chip, called half-adder, designed to carry out

this operation.

Full-Adder Now that we know how to add two bits, figure 2.3 presents a full-adder

chip, designed to add three bits. Like the half-adder case, the full-adder chip pro-

duces two outputs: the least significant bit of the addition, and the carry bit.

Adder Memory and register chips represent integer numbers by n-bit patterns,

n being 16, 32, 64, and so forth—depending on the computer platform. The chip

whose job is to add such numbers is called a multi-bit adder, or simply adder. Figure

2.4 presents a 16-bit adder, noting that the same logic and specifications scale up as is

to any n-bit adder.

Incrementer It is convenient to have a special-purpose chip dedicated to adding the

constant 1 to a given number. Here is the specification of a 16-bit incrementer:

Inputs Outputs

a b carry sum

0 0 0 0 Half
Adder

a sum

b carry0 1 0 1

1 0 0 1

1 1 1 0

Chip name: HalfAdder

Inputs: a, b

Outputs: sum, carry

Function: sum = LSB of a + b

carry = MSB of a + b

Figure 2.2 Half-adder, designed to add 2 bits.
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a b c carry sum

0 0 0 0 0

Full
Adder

a
sum

b
carry

c

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

Chip name: FullAdder

Inputs: a, b, c

Outputs: sum, carry

Function: sum = LSB of a + b + c

carry = MSB of a + b + c

Figure 2.3 Full-adder, designed to add 3 bits.

... 1 0 1 1 a

... 0 0 1 0 b
+

out
a

16

16-bit
Adder

b
16

16

... 1 1 0 1 out

Chip name: Add16

Inputs: a[16], b[16]

Outputs: out[16]

Function: out = a + b

Comment: Integer 2's complement addition.

Overflow is neither detected nor handled.

Figure 2.4 16-bit adder. Addition of two n-bit binary numbers for any n is ‘‘more of the
same.’’
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Chip name: Inc16

Inputs: in[16]

Outputs: out[16]

Function: out=in+1

Comment: Integer 2’s complement addition.

Overflow is neither detected nor handled.

2.2.2 The Arithmetic Logic Unit (ALU)

The specifications of the adder chips presented so far were generic, meaning that they

hold for any computer. In contrast, this section describes an ALU that will later be-

come the centerpiece of a specific computer platform called Hack. At the same time,

the principles underlying the design of our ALU are rather general. Further, our

ALU architecture achieves a great deal of functionality using a minimal set of inter-

nal parts. In that respect, it provides a good example of an efficient and elegant logic

design.

The Hack ALU computes a fixed set of functions out ¼ fiðx; yÞ where x and y are

the chip’s two 16-bit inputs, out is the chip’s 16-bit output, and fi is an arithmetic

or logical function selected from a fixed repertoire of eighteen possible functions. We

instruct the ALU which function to compute by setting six input bits, called control

bits, to selected binary values. The exact input-output specification is given in figure

2.5, using pseudo-code.

Note that each one of the six control bits instructs the ALU to carry out a certain

elementary operation. Taken together, the combined effects of these operations cause

the ALU to compute a variety of useful functions. Since the overall operation is

driven by six control bits, the ALU can potentially compute 26 ¼ 64 different func-

tions. Eighteen of these functions are documented in figure 2.6.

We see that programming our ALU to compute a certain function f ðx; yÞ is done
by setting the six control bits to the code of the desired function. From this point on,

the internal ALU logic specified in figure 2.5 should cause the ALU to output the

value f ðx; yÞ specified in figure 2.6. Of course, this does not happen miraculously, it’s

the result of careful design.

For example, let us consider the twelfth row of figure 2.6, where the ALU is

instructed to compute the function x-1. The zx and nx bits are 0, so the x input

is neither zeroed nor negated. The zy and ny bits are 1, so the y input is first

zeroed, and then negated bit-wise. Bit-wise negation of zero, ð000 . . . 00Þtwo, gives
ð111 . . . 11Þtwo, the 2’s complement code of �1. Thus the ALU inputs end up being x
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zx no

zr

nx zy ny f

ALU

ng

16
bits

16
bits

x

y 16
bits

out

f(x,y)

Chip name: ALU

Inputs: x[16], y[16], // Two 16-bit data inputs

zx, // Zero the x input

nx, // Negate the x input

zy, // Zero the y input

ny, // Negate the y input

f, // Function code: 1 for Add, 0 for And

no // Negate the out output

Outputs: out[16], // 16-bit output

zr, // True iff out=0

ng // True iff out<0

Function: if zx then x = 0 // 16-bit zero constant

if nx then x = !x // Bit-wise negation

if zy then y = 0 // 16-bit zero constant

if ny then y = !y // Bit-wise negation

if f then out = x + y // Integer 2's complement addition

else out = x & y // Bit-wise And

if no then out = !out // Bit-wise negation

if out=0 then zr = 1 else zr = 0 // 16-bit eq. comparison

if out<0 then ng = 1 else ng = 0 // 16-bit neg. comparison

Comment: Overflow is neither detected nor handled.

Figure 2.5 The Arithmetic Logic Unit.
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and �1. Since the f-bit is 1, the selected operation is arithmetic addition, causing the

ALU to calculate x+(-1). Finally, since the no bit is 0, the output is not negated

but rather left as is. To conclude, the ALU ends up computing x-1, which was

our goal.

Does the ALU logic described in figure 2.6 compute every one of the other seven-

teen functions listed in the figure’s right column? To verify that this is indeed the

case, the reader can pick up some other rows in the table and prove their respec-

tive ALU operation. We note that some of these computations, beginning with the

These bits instruct

how to preset

the x input

These bits instruct

how to preset

the y input

This bit selects

between

+ / And

This bit inst.

how to

postset out

Resulting

ALU

output

zx nx zy ny f no out=

if zx
then
x=0

if nx
then
x=!x

if zy
then
y=0

if ny
then
y=!y

if f then
out=x+y
else

out=x&y

if no
then

out=!out f(x,y)=

1 0 1 0 1 0 0
1 1 1 1 1 1 1
1 1 1 0 1 0 -1
0 0 1 1 0 0 x
1 1 0 0 0 0 y
0 0 1 1 0 1 !x
1 1 0 0 0 1 !y
0 0 1 1 1 1 -x
1 1 0 0 1 1 -y
0 1 1 1 1 1 x+1
1 1 0 1 1 1 y+1
0 0 1 1 1 0 x-1
1 1 0 0 1 0 y-1
0 0 0 0 1 0 x+y
0 1 0 0 1 1 x-y
0 0 0 1 1 1 y-x
0 0 0 0 0 0 x&y
0 1 0 1 0 1 x|y

Figure 2.6 The ALU truth table. Taken together, the binary operations coded by the first six
columns effect the function listed in the right column (we use the symbols !, &, and | to rep-
resent the operators Not, And, and Or, respectively, performed bit-wise). The complete ALU
truth table consists of sixty-four rows, of which only the eighteen presented here are of interest.
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function f ðx; yÞ ¼ 1, are not trivial. We also note that there are some other useful

functions computed by the ALU but not listed in the figure.

It may be instructive to describe the thought process that led to the design of this

particular ALU. First, we made a list of all the primitive operations that we wanted

our computer to be able to perform (right column in figure 2.6). Next, we used

backward reasoning to figure out how x, y, and out can be manipulated in binary

fashion in order to carry out the desired operations. These processing requirements,

along with our objective to keep the ALU logic as simple as possible, have led to the

design decision to use six control bits, each associated with a straightforward binary

operation. The resulting ALU is simple and elegant. And in the hardware business,

simplicity and elegance imply inexpensive and powerful computer systems.

2.3 Implementation

Our implementation guidelines are intentionally partial, since we want you to dis-

cover the actual chip architectures yourself. As usual, each chip can be implemented

in more than one way; the simpler the implementation, the better.

Half-Adder An inspection of figure 2.2 reveals that the functions sumða; bÞ and

carryða; bÞ happen to be identical to the standard Xorða; bÞ and Andða; bÞ Boolean

functions. Thus, the implementation of this adder is straightforward, using pre-

viously built gates.

Full-Adder A full adder chip can be implemented from two half adder chips and

one additional simple gate. A direct implementation is also possible, without using

half-adder chips.

Adder The addition of two signed numbers represented by the 2’s complement

method as two n-bit buses can be done bit-wise, from right to left, in n steps. In step

0, the least significant pair of bits is added, and the carry bit is fed into the addition

of the next significant pair of bits. The process continues until in step n� 1 the most

significant pair of bits is added. Note that each step involves the addition of three

bits. Hence, an n-bit adder can be implemented by creating an array of n full-adder

chips and propagating the carry bits up the significance ladder.

Incrementer An n-bit incrementer can be implemented trivially from an n-bit adder.
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ALU Note that our ALU was carefully planned to effect all the desired ALU

operations logically, using simple Boolean operations. Therefore, the physical imple-

mentation of the ALU is reduced to implementing these simple Boolean operations,

following their pseudo-code specifications. Your first step will likely be to create a

logic circuit that manipulates a 16-bit input according to the nx and zx control bits

(i.e., the circuit should conditionally zero and negate the 16-bit input). This logic can

be used to manipulate the x and y inputs, as well as the out output. Chips for bit-

wise And-ing and addition have already been built in this and in the previous chap-

ter. Thus, what remains is to build logic that chooses between them according to the

f control bit. Finally, you will need to build logic that integrates all the other chips

into the overall ALU. (When we say ‘‘build logic,’’ we mean ‘‘write HDL code’’).

2.4 Perspective

The construction of the multi-bit adder presented in this chapter was standard,

although no attention was paid to efficiency. In fact, our suggested adder implemen-

tation is rather inefficient, due to the long delays incurred while the carry bit prop-

agates from the least significant bit pair to the most significant bit pair. This problem

can be alleviated using logic circuits that effect so-called carry look-ahead techniques.

Since addition is one of the most prevalent operations in any given hardware plat-

form, any such low-level improvement can result in dramatic and global perfor-

mance gains throughout the computer.

In any given computer, the overall functionality of the hardware/software plat-

form is delivered jointly by the ALU and the operating system that runs on top of it.

Thus, when designing a new computer system, the question of how much function-

ality the ALU should deliver is essentially a cost/performance issue. The general rule

is that hardware implementations of arithmetic and logical operations are usually

more costly, but achieve better performance. The design trade-off that we have

chosen in this book is to specify an ALU hardware with a limited functionality and

then implement as many operations as possible in software. For example, our ALU

features neither multiplication nor division nor floating point arithmetic. We will

implement some of these operations (as well as more mathematical functions) at the

operating system level, described in chapter 12.

Detailed treatments of Boolean arithmetic and ALU design can be found in most

computer architecture textbooks.
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2.5 Project

Objective Implement all the chips presented in this chapter. The only building

blocks that you can use are the chips that you will gradually build and the chips

described in the previous chapter.

Tip When your HDL programs invoke chips that you may have built in the previ-

ous project, we recommend that you use the built-in versions of these chips instead.

This will ensure correctness and speed up the operation of the hardware simulator.

There is a simple way to accomplish this convention: Make sure that your project

directory includes only the .hdl files that belong to the present project.

The remaining instructions for this project are identical to those of the project

from the previous chapter, except that the last step should be replaced with ‘‘Build

and simulate all the chips specified in the projects/02 directory.’’
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3 Sequential Logic

It’s a poor sort of memory that only works backward.

—Lewis Carroll (1832–1898)

All the Boolean and arithmetic chips that we built in chapters 1 and 2 were combi-

national. Combinational chips compute functions that depend solely on combinations

of their input values. These relatively simple chips provide many important process-

ing functions (like the ALU), but they cannot maintain state. Since computers must

be able to not only compute values but also store and recall values, they must be

equipped with memory elements that can preserve data over time. These memory

elements are built from sequential chips.

The implementation of memory elements is an intricate art involving synchroni-

zation, clocking, and feedback loops. Conveniently, most of this complexity can be

embedded in the operating logic of very low-level sequential gates called flip-flops.

Using these flip-flops as elementary building blocks, we will specify and build all

the memory devices employed by typical modern computers, from binary cells to

registers to memory banks and counters. This effort will complete the construction of

the chip set needed to build an entire computer—a challenge that we take up in the

chapter 5.

Following a brief overview of clocks and flip-flops, the Background section intro-

duces all the memory chips that we will build on top of them. The next two sec-

tions describe the chips Specification and Implementation, respectively. As usual, all

the chips mentioned in the chapter can be built and tested using the hardware simu-

lator supplied with the book, following the instructions given in the final Project

section.



3.1 Background

The act of ‘‘remembering something’’ is inherently time-dependent: You remember

now what has been committed to memory before. Thus, in order to build chips that

‘‘remember’’ information, we must first develop some standard means for represent-

ing the progression of time.

The Clock In most computers, the passage of time is represented by a master clock

that delivers a continuous train of alternating signals. The exact hardware imple-

mentation is usually based on an oscillator that alternates continuously between two

phases labeled 0–1, low-high, tick-tock, etc. The elapsed time between the beginning

of a ‘‘tick’’ and the end of the subsequent ‘‘tock’’ is called cycle, and each clock cycle

is taken to model one discrete time unit. The current clock phase (tick or tock) is

represented by a binary signal. Using the hardware’s circuitry, this signal is simulta-

neously broadcast to every sequential chip throughout the computer platform.

Flip-Flops The most elementary sequential element in the computer is a device

called a flip-flop, of which there are several variants. In this book we use a variant

called a data flip-flop, or DFF, whose interface consists of a single-bit data input

and a single-bit data output. In addition, the DFF has a clock input that con-

tinuously changes according to the master clock’s signal. Taken together, the data

and the clock inputs enable the DFF to implement the time-based behavior outðtÞ ¼
inðt� 1Þ, where in and out are the gate’s input and output values and t is the current

clock cycle. In other words, the DFF simply outputs the input value from the previ-

ous time unit.

As we now show, this elementary behavior can form the basis of all the hardware

devices that computers use to maintain state, from binary cells to registers to arbi-

trarily large random access memory (RAM) units.

Registers A register is a storage device that can ‘‘store,’’ or ‘‘remember,’’ a value

over time, implementing the classical storage behavior outðtÞ ¼ outðt� 1Þ. A DFF,

on the other hand, can only output its previous input, namely, outðtÞ ¼ inðt� 1Þ.
This suggests that a register can be implemented from a DFF by simply feeding the

output of the latter back into its input, creating the device shown in the middle of

figure 3.1. Presumably, the output of this device at any time t will echo its output at

time t� 1, yielding the classical function expected from a storage unit.
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Well, not so. The device shown in the middle of figure 3.1 is invalid. First, it is not

clear how we’ll ever be able to load this device with a new data value, since there are

no means to tell the DFF when to draw its input from the in wire and when from the

out wire. More generally, the rules of chip design dictate that internal pins must

have a fan-in of 1, meaning that they can be fed from a single source only.

The good thing about this thought experiment is that it leads us to the correct and

elegant solution shown in the right side of figure 3.1. In particular, a natural way to

resolve our input ambiguity is to introduce a multiplexor into the design. Further, the

‘‘select bit’’ of this multiplexor can become the ‘‘load bit’’ of the overall register chip:

If we want the register to start storing a new value, we can put this value in the in

input and set the load bit to 1; if we want the register to keep storing its internal

value until further notice, we can set the load bit to 0.

Once we have developed the basic mechanism for remembering a single bit over

time, we can easily construct arbitrarily wide registers. This can be achieved by

forming an array of as many single-bit registers as needed, creating a register that

holds multi-bit values (figure 3.2). The basic design parameter of such a register is its

width—the number of bits that it holds—e.g., 16, 32, or 64. The multi-bit contents of

such registers are typically referred to as words.

Memories Once we have the basic ability to represent words, we can proceed to

build memory banks of arbitrary length. As figure 3.3 shows, this can be done by

stacking together many registers to form a Random Access Memory RAM unit. The

term random access memory derives from the requirement that read/write operations

M
ux

load

DFF DFF DFF

out(t) = in(t–1) if load(t–1) then out(t) = in(t–1)
else out(t) = out(t–1)

1-bit register (Bit)Flip-flop

out(t) = out(t–1) ?
out(t) = in(t–1) ?

Invalid design

in out in out in out

Figure 3.1 From a DFF to a single-bit register. The small triangle represents the clock input.
This icon is used to state that the marked chip, as well as the overall chip that encapsulates it,
is time-dependent.
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Bit out

load

in

if load(t–1) then out(t) = in(t–1)
else out(t) = out(t–1)

. . .Bit

w-bit register

out

load

Binary cell (Bit)

in
w w

if load(t–1) then out(t) = in(t–1)
else out(t) = out(t–1)

Bit Bit

Figure 3.2 From single-bit to multi-bit registers. A multi-bit register of width w can be con-
structed from an array of w 1-bit chips. The operating functions of both chips is exactly the
same, except that the ‘‘¼’’ assignments are single-bit and multi-bit, respectively.

load

(0 to n–1)
direct access logic

Register 0

Register 1

Register n–1

RAMn

.

..
Register 2

in out

(word) (word)

address

Figure 3.3 RAM chip (conceptual). The width and length of the RAM can vary.

44 Chapter 3



on a RAM should be able to access randomly chosen words, with no restrictions on

the order in which they are accessed. That is to say, we require that any word in the

memory—irrespective of its physical location—be accessed directly, in equal speed.

This requirement can be satisfied as follows. First, we assign each word in the n-

register RAM a unique address (an integer between 0 to n� 1), according to which

it will be accessed. Second, in addition to building an array of n registers, we build a

gate logic design that, given an address j, is capable of selecting the individual reg-

ister whose address is j. Note however that the notion of an ‘‘address’’ is not an ex-

plicit part of the RAM design, since the registers are not ‘‘marked’’ with addresses in

any physical sense. Rather, as we will see later, the chip is equipped with direct access

logic that implements the notion of addressing using logical means.

In sum, a classical RAM device accepts three inputs: a data input, an address in-

put, and a load bit. The address specifies which RAM register should be accessed in

the current time unit. In the case of a read operation (load=0), the RAM’s output

immediately emits the value of the selected register. In the case of a write operation

(load=1), the selected memory register commits to the input value in the next time

unit, at which point the RAM’s output will start emitting it.

The basic design parameters of a RAM device are its data width—the width of

each one of its words, and its size—the number of words in the RAM. Modern

computers typically employ 32- or 64-bit-wide RAMs whose sizes are up to hundreds

of millions.

Counters A counter is a sequential chip whose state is an integer number that

increments every time unit, effecting the function outðtÞ ¼ outðt� 1Þ þ c, where c is

typically 1. Counters play an important role in digital architectures. For example, a

typical CPU includes a program counter whose output is interpreted as the address of

the instruction that should be executed next in the current program.

A counter chip can be implemented by combining the input/output logic of a

standard register with the combinatorial logic for adding a constant. Typically, the

counter will have to be equipped with some additional functionality, such as possi-

bilities for resetting the count to zero, loading a new counting base, or decrementing

instead of incrementing.

Time Matters All the chips described so far in this chapter are sequential. Simply

stated, a sequential chip is a chip that embeds one or more DFF gates, either directly

or indirectly. Functionally speaking, the DFF gates endow sequential chips with

the ability to either maintain state (as in memory units) or operate on state (as in
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counters). Technically speaking, this is done by forming feedback loops inside the

sequential chip (see figure 3.4). In combinational chips, where time is neither mod-

eled nor recognized, the introduction of feedback loops is problematic: The output

would depend on the input, which itself would depend on the output, and thus the

output would depend on itself. On the other hand, there is no difficulty in feeding the

output of a sequential chip back into itself, since the DFFs introduce an inherent

time delay: The output at time t does not depend on itself, but rather on the output at

time t� 1. This property guards against the uncontrolled ‘‘data races’’ that would

occur in combinational chips with feedback loops.

Recall that the outputs of combinational chips change when their inputs change,

irrespective of time. In contrast, the inclusion of the DFFs in the sequential archi-

tecture ensures that their outputs change only at the point of transition from one

clock cycle to the next, and not within the cycle itself. In fact, we allow sequential

chips to be in unstable states during clock cycles, requiring only that at the beginning

of the next cycle they output correct values.

This ‘‘discretization’’ of the sequential chips’ outputs has an important side effect:

It can be used to synchronize the overall computer architecture. To illustrate, sup-

pose we instruct the arithmetic logic unit (ALU) to compute xþ y where x is the

value of a nearby register and y is the value of a remote RAM register. Because of

various physical constraints (distance, resistance, interference, random noise, etc.) the

electric signals representing x and y will likely arrive at the ALU at different times.

However, being a combinational chip, the ALU is insensitive to the concept of time—

it continuously adds up whichever data values happen to lodge in its inputs. Thus, it

will take some time before the ALU’s output stabilizes to the correct xþ y result.

Until then, the ALU will generate garbage.

Combinational chip

comb.
logicin out

Sequential chip

comb.
logicin outDFF

gate(s)
comb.
logic

(optional) (optional)time delay

out = some function of (in) out(t) = some function of (in(t–1), out(t–1))

Figure 3.4 Combinational versus sequential logic (in and out stand for one or more input
and output variables). Sequential chips always consist of a layer of DFFs sandwiched between
optional combinational logic layers.
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How can we overcome this difficulty? Well, since the output of the ALU is always

routed to some sort of a sequential chip (a register, a RAM location, etc.), we don’t

really care. All we have to do is ensure, when we build the computer’s clock, that

the length of the clock cycle will be slightly longer that the time it takes a bit to travel

the longest distance from one chip in the architecture to another. This way, we are

guaranteed that by the time the sequential chip updates its state (at the beginning of

the next clock cycle), the inputs that it receives from the ALU will be valid. This, in a

nutshell, is the trick that synchronizes a set of stand-alone hardware components into

a well-coordinated system, as we shall see in chapter 5.

3.2 Specification

This section specifies a hierarchy of sequential chips:

m Data-flip-flops (DFFs)

m Registers (based on DFFs)

m Memory banks (based on registers)

m Counter chips (also based on registers)

3.2.1 Data-Flip-Flop

The most elementary sequential device that we present—the basic component from

which all memory elements will be designed—is the data flip-flop gate. A DFF gate

has a single-bit input and a single-bit output, as follows:

DFF outin

Chip name: DFF

Inputs: in

Outputs: out

Function: out(t)=in(t-1)

Comment: This clocked gate has a built-in

implementation and thus there is

no need to implement it.

Like Nand gates, DFF gates enter our computer archtecture at a very low

level. Specifically, all the sequential chips in the computer (registers, memory, and

47 Sequential Logic



counters) are based on numerous DFF gates. All these DFFs are connected to the

same master clock, forming a huge distributed ‘‘chorus line.’’ At the beginning of

each clock cycle, the outputs of all the DFFs in the computer commit to their

inputs during the previous time unit. At all other times, the DFFs are ‘‘latched,’’

meaning that changes in their inputs have no immediate effect on their outputs.

This conduction operation effects any one of the millions of DFF gates that make

up the system, about a billion times per second (depending on the computer’s clock

frequency).

Hardware implementations achieve this time dependency by simultaneously feed-

ing the master clock signal to all the DFF gates in the platform. Hardware simu-

lators emulate the same effect in software. As far as the computer architect is

concerned, the end result is the same: The inclusion of a DFF gate in the design of

any chip ensures that the overall chip, as well as all the chips up the hardware hier-

archy that depend on it, will be inherently time-dependent. These chips are called

sequential, by definition.

The physical implementation of a DFF is an intricate task, and is based on

connecting several elementary logic gates using feedback loops (one classic design

is based on Nand gates alone). In this book we have chosen to abstract away this

complexity, treating DFFs as primitive building blocks. Thus, our hardware simu-

lator provides a built-in DFF implementation that can be readily used by other

chips.

3.2.2 Registers

A single-bit register, which we call Bit, or binary cell, is designed to store a single bit

of information (0 or 1). The chip interface consists of an input pin that carries a data

bit, a load pin that enables the cell for writes, and an output pin that emits the cur-

rent state of the cell. The interface diagram and API of a binary cell are as follows:

Bit outin

load
Chip name: Bit

Inputs: in, load

Outputs: out

Function: If load(t-1) then out(t)=in(t-1)

else out(t)=out(t-1)

The API of the Register chip is essentially the same, except that the input and output

pins are designed to handle multi-bit values:
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in Register

load

w bits
out

w bits

Chip name: Register

Inputs: in[16], load

Outputs: out[16]

Function: If load(t-1) then out(t)=in(t-1)

else out(t)=out(t-1)

Comment: "=" is a 16-bit operation.

The Bit and Register chips have exactly the same read/write behavior:

Read: To read the contents of a register, we simply probe its output.

Write: To write a new data value d into a register, we put d in the in input and

assert (set to 1) the load input. In the next clock cycle, the register commits to the

new data value, and its output starts emitting d.

3.2.3 Memory

A direct-access memory unit, also called RAM, is an array of n w-bit registers,

equipped with direct access circuitry. The number of registers (n) and the width of

each register (w) are called the memory’s size and width, respectively. We will now set

out to build a hierarchy of suchmemory devices, all 16 bits wide, but with varying sizes:

RAM8, RAM64, RAM512, RAM4K, and RAM16K units. All these memory chips

have precisely the same API, and thus we describe them in one parametric diagram:

address

load

out

in

16  bits

log2n
bits

RAMn
16  bits

Chip name: RAMn // n and k are listed below

Inputs: in[16], address[k], load

Outputs: out[16]

Function: out(t)=RAM[address(t)](t)

If load(t-1) then

RAM[address(t-1)](t)=in(t-1)

Comment: "=" is a 16-bit operation.

The specific RAM chips needed for the Hack platform are:

Chip name n k

RAM8 8 3

RAM64 64 6

RAM512 512 9

RAM4K 4096 12

RAM16K 16384 14
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Read: To read the contents of register number m, we put m in the address input.

The RAM’s direct-access logic will select register number m, which will then emit its

output value to the RAM’s output pin. This is a combinational operation, indepen-

dent of the clock.

Write: To write a new data value d into register number m, we put m in the

address input, d in the in input, and assert the load input bit. This causes the

RAM’s direct-access logic to select register number m, and the load bit to enable it.

In the next clock cycle, the selected register will commit to the new value (d), and the

RAM’s output will start emitting it.

3.2.4 Counter

Although a counter is a stand-alone abstraction in its own right, it is convenient

to motivate its specification by saying a few words about the context in which it is

normally used. For example, consider a counter chip designed to contain the address

of the instruction that the computer should fetch and execute next. In most cases,

the counter has to simply increment itself by 1 in each clock cycle, thus causing the

computer to fetch the next instruction in the program. In other cases, for example, in

‘‘jump to execute instruction number n,’’ we want to be able to set the counter to n,

then have it continue its default counting behavior with nþ 1, nþ 2, and so forth.

Finally, the program’s execution can be restarted anytime by resetting the counter to

0, assuming that that’s the address of the program’s first instruction. In short, we

need a loadable and resettable counter.

With that in mind, the interface of our Counter chip is similar to that of a register,

except that it has two additional control bits labeled reset and inc. When inc=1,

the counter increments its state in every clock cycle, emitting the value out(t)=

out(t-1)+1. If we want to reset the counter to 0, we assert the reset bit; if we want

to initialize it to some other counting base d, we put d in the in input and assert the

load bit. The details are given in the counter API, and an example of its operation is

depicted in figure 3.5.

3.3 Implementation

Flip-Flop DFF gates can be implemented from lower-level logic gates like those

built in chapter 1. However, in this book we treat DFFs as primitive gates, and thus

they can be used in hardware construction projects without worrying about their

internal implementation.
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PC (counter)
w bits

outin
w bits

inc load reset

Chip name: PC // 16-bit counter

Inputs: in[16], inc, load, reset

Outputs: out[16]

Function: If reset(t-1) then out(t)=0

else if load(t-1) then out(t)=in(t-1)

else if inc(t-1) then out(t)=out(t-1)+1

else out(t)=out(t-1)

Comment: "=" is 16-bit assignment.

"+" is 16-bit arithmetic addition.

47 47 0 0 1 2 3 4 527 528 529 530 530

527 527 527 527 527 527 527 527 527 527 527 527 527

reset

load

22 23 24 25 26 27 28 29 30 31 32 33 34

inc

clock

in

cycle

out

We assume that we start tracking the counter in time unit 22, when its input
and output happen to be 527 and 47, respectively.  We also assume that the
counter’s control bits (reset, load, inc) start at 0 ---- all arbitrary assumptions.

Figure 3.5 Counter simulation. At time 23 a reset signal is issued, causing the counter to emit
0 in the following time unit. The 0 persists until an inc signal is issued at time 25, causing the
counter to start incrementing, one time unit later. The counting continues until, at time 29, the
load bit is asserted. Since the counter’s input holds the number 527, the counter is reset to that
value in the next time unit. Since inc is still asserted, the counter continues incrementing until
time 33, when inc is de-asserted.
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1-Bit Register (Bit) The implementation of this chip was given in figure 3.1.

Register The construction of a w-bit Register chip from 1-bit registers is straight-

forward. All we have to do is construct an array of w Bit gates and feed the register’s

load input to every one of them.

8-Register Memory (RAM8) An inspection of figure 3.3 may be useful here. To

implement a RAM8 chip, we line up an array of eight registers. Next, we have to

build combinational logic that, given a certain address value, takes the RAM8’s

in input and loads it into the selected register. In a similar fashion, we have to build

combinational logic that, given a certain address value, selects the right register and

pipes its out value to the RAM8’s out output. Tip: This combinational logic was

already implemented in chapter 1.

n-Register Memory A memory bank of arbitrary length (a power of 2) can be built

recursively from smaller memory units, all the way down to the single register level.

This view is depicted in figure 3.6. Focusing on the right-hand side of the figure, we

note that a 64-register RAM can be built from an array of eight 8-register RAM

chips. To select a particular register from the RAM64 memory, we use a 6-bit

address, say xxxyyy. The MSB xxx bits select one of the RAM8 chips, and the

LSB yyy bits select one of the registers within the selected RAM8. The RAM64

chip should be equipped with logic circuits that effect this hierarchical addressing

scheme.

Counter A w-bit counter consists of two main elements: a regular w-bit register, and

combinational logic. The combinational logic is designed to (a) compute the count-

ing function, and (b) put the counter in the right operating mode, as mandated by

the values of its three control bits. Tip: Most of this logic was already built in chap-

ter 2.

3.4 Perspective

The cornerstone of all the memory systems described in this chapter is the flip-flop—

a gate that we treated here as an atomic, or primitive, building block. The usual

approach in hardware textbooks is to construct flip-flops from elementary combina-

torial gates (e.g., Nand gates) using appropriate feedback loops. The standard con-
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struction begins by building a simple (non-clocked) flip-flop that is bi-stable, namely,

that can be set to be in one of two states. Then a clocked flip-flop is obtained by

cascading two such simple flip-flops, the first being set when the clock ticks and the

second when the clock tocks. This ‘‘master-slave’’ design endows the overall flip-flop

with the desired clocked synchronization functionality.

These constructions are rather elaborate, requiring an understating of delicate

issues like the effect of feedback loops on combinatorial circuits, as well as the im-

plementation of clock cycles using a two-phase binary clock signal. In this book we

have chosen to abstract away these low-level considerations by treating the flip-flop

as an atomic gate. Readers who wish to explore the internal structure of flip-flop

gates can find detailed descriptions in most logic design and computer architecture

textbooks.

In closing, we should mention that memory devices of modern computers are

not always constructed from standard flip-flops. Instead, modern memory chips

are usually very carefully optimized, exploiting the unique physical properties of the

underlying storage technology. Many such alternative technologies are available

Bit Bit Register

RAM8
Register

RAM 8

RAM 64

8

8

Register
..
.

Register

..

.

RAM8

. . .Bit . . .
Figure 3.6 Gradual construction of memory banks by recursive ascent. A w-bit register is
an array of w binary cells, an 8-register RAM is an array of eight w-bit registers, a 64-register
RAM is an array of eight RAM8 chips, and so on. Only three more similar construction steps
are necessary to build a 16K RAM chip.
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today to computer designers; as usual, which technology to use is a cost-performance

issue.

Aside from these low-level considerations, all the other chip constructions in

this chapter—the registers and memory chips that were built on top of the flip-flop

gates—were standard.

3.5 Project

Objective Build all the chips described in the chapter. The only building blocks that

you can use are primitive DFF gates, chips that you will build on top of them, and

chips described in previous chapters.

Resources The only tool that you need for this project is the hardware simulator

supplied with the book. All the chips should be implemented in the HDL language

specified in appendix A. As usual, for each chip we supply a skeletal .hdl program

with a missing implementation part, a .tst script file that tells the hardware simu-

lator how to test it, and a .cmp compare file. Your job is to complete the missing

implementation parts of the supplied .hdl programs.

Contract When loaded into the hardware simulator, your chip design (modi-

fied .hdl program), tested on the supplied .tst file, should produce the out-

puts listed in the supplied .cmp file. If that is not the case, the simulator will let you

know.

Tip The Data Flip-Flop (DFF) gate is considered primitive and thus there is no

need to build it: When the simulator encounters a DFF gate in an HDL program, it

automatically invokes the built-in tools/builtIn/DFF.hdl implementation.

The Directory Structure of This Project When constructing RAM chips from

smaller ones, we recommend using built-in versions of the latter. Otherwise, the

simulator may run very slowly or even out of (real) memory space, since large RAM

chips contain tens of thousands of lower-level chips, and all these chips are kept in

memory (as software objects) by the simulator. For this reason, we have placed the

RAM512.hdl, RAM4K.hdl, and RAM16K.hdl programs in a separate directory. This

way, the recursive descent construction of the RAM4K and RAM16K chips stops

with the RAM512 chip, whereas the lower-level chips from which the latter chip
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is made are bound to be built-in (since the simulator does not find them in this

directory).

Steps We recommend proceeding in the following order:

0. The hardware simulator needed for this project is available in the tools direc-

tory of the book’s software suite.

1. Read appendix A, focusing on sections A.6 and A.7.

2. Go through the hardware simulator tutorial, focusing on parts IV and V.

3. Build and simulate all the chips specified in the projects/03 directory.
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4 Machine Language

Make everything as simple as possible, but not simpler.

—Albert Einstein (1879–1955)

A computer can be described constructively, by laying out its hardware platform

and explaining how it is built from low-level chips. A computer can also be described

abstractly, by specifying and demonstrating its machine language capabilities. And

indeed, it is convenient to get acquainted with a new computer system by first seeing

some low-level programs written in its machine language. This helps us understand

not only how to program the computer to do useful things, but also why its hard-

ware was designed in a certain way. With that in mind, this chapter focuses on low-

level programming in machine language. This sets the stage for chapter 5, where we

complete the construction of a general-purpose computer designed to run machine

language programs. This computer will be constructed from the chip set built in

chapters 1–3.

A machine language is an agreed-upon formalism, designed to code low-level

programs as series of machine instructions. Using these instructions, the programmer

can command the processor to perform arithmetic and logic operations, fetch and

store values from and to the memory, move values from one register to another, test

Boolean conditions, and so on. As opposed to high-level languages, whose basic

design goals are generality and power of expression, the goal of machine language’s

design is direct execution in, and total control of, a given hardware platform. Of

course, generality, power, and elegance are still desired, but only to the extent that

they support the basic requirement of direct execution in hardware.

Machine language is the most profound interface in the overall computer

enterprise—the fine line where hardware and software meet. This is the point where

the abstract thoughts of the programmer, as manifested in symbolic instructions, are

turned into physical operations performed in silicon. Thus, machine language can



be construed as both a programming tool and an integral part of the hardware plat-

form. In fact, just as we say that the machine language is designed to exploit a given

hardware platform, we can say that the hardware platform is designed to fetch, in-

terpret, and execute instructions written in the given machine language.

The chapter begins with a general introduction to machine language program-

ming. Next, we give a detailed specification of the Hack machine language, covering

both its binary and its symbolic assembly versions. The project that ends the chapter

engages you in writing a couple of machine language programs. This project offers

a hands-on appreciation of low-level programming and prepares you for building the

computer itself in the next chapter.

Although most people will never write programs directly in machine language,

the study of low-level programming is a prerequisite to a complete understanding of

computer architectures. Also, it is rather fascinating to realize how the most sophis-

ticated software systems are, at bottom, long series of elementary instructions, each

specifying a very simple and primitive operation on the underlying hardware. As

usual, this understanding is best achieved constructively, by writing some low-level

code and running it directly on the hardware platform.

4.1 Background

This chapter is language-oriented. Therefore, we can abstract away most of the

details of the underlying hardware platform, deferring its description to the next

chapter. Indeed, to give a general description of machine languages, it is sufficient

to focus on three main abstractions only: a processor, a memory, and a set of

registers.

4.1.1 Machines

A machine language can be viewed as an agreed-upon formalism, designed to ma-

nipulate a memory using a processor and a set of registers.

Memory The term memory refers loosely to the collection of hardware devices that

store data and instructions in a computer. From the programmer’s standpoint, all

memories have the same structure: A continuous array of cells of some fixed width,

also called words or locations, each having a unique address. Hence, an individual

word (representing either a data item or an instruction) is specified by supplying its
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address. In what follows we will refer to such individual words using the equivalent

notation Memory[address], RAM[address], or M[address] for brevity.

Processor The processor, normally called Central Processing Unit or CPU, is a

device capable of performing a fixed set of elementary operations. These typically

include arithmetic and logic operations, memory access operations, and control (also

called branching) operations. The operands of these operations are binary values

that come from registers and selected memory locations. Likewise, the results of the

operations (the processor’s output) can be stored either in registers or in selected

memory locations.

Registers Memory access is a relatively slow operation, requiring long instruc-

tion formats (an address may require 32 bits). For this reason, most processors are

equipped with several registers, each capable of holding a single value. Located in the

processor’s immediate proximity, the registers serve as a high-speed local memory,

allowing the processor to manipulate data and instructions quickly. This setting

enables the programmer to minimize the use of memory access commands, thus

speeding up the program’s execution.

4.1.2 Languages

A machine language program is a series of coded instructions. For example, a typical

instruction in a 16-bit computer may be 1010001100011001. In order to figure out

what this instruction means, we have to know the rules of the game, namely, the in-

struction set of the underlying hardware platform. For example, the language may be

such that each instruction consists of four 4-bit fields: The left-most field codes a

CPU operation, and the remaining three fields represent the operation’s operands.

Thus the previous command may code the operation set R3 to R1þ R9, depending

of course on the hardware specification and the machine language syntax.

Since binary codes are rather cryptic, machine languages are normally specified

using both binary codes and symbolic mnemonics (a mnemonic is a symbolic label

whose name hints at what it stands for—in our case hardware elements and binary

operations). For example, the language designer can decide that the operation code

1010 will be represented by the mnemonic add and that the registers of the machine

will be symbolically referred to using the symbols R0, R1, R2, and so forth. Using

these conventions, one can specify machine language instructions either directly, as

1010001100011001, or symbolically, as, say, ADD R3,R1,R9.
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Taking this symbolic abstraction one step further, we can allow ourselves not

only to read symbolic notation, but to actually write programs using symbolic com-

mands rather than binary instructions. Next, we can use a text processing program

to parse the symbolic commands into their underlying fields (mnemonics and oper-

ands), translate each field into its equivalent binary representation, and assemble the

resulting codes into binary machine instructions. The symbolic notation is called as-

sembly language, or simply assembly, and the program that translates from assembly

to binary is called assembler.

Since different computers vary in terms of CPU operations, number and type of

registers, and assembly syntax rules, there is a Tower of Babel of machine languages,

each with its own obscure syntax. Yet irrespective of this variety, all machine lan-

guages support similar sets of generic commands, which we now describe.

4.1.3 Commands

Arithmetic and Logic Operations Every computer is required to perform basic

arithmetic operations like addition and subtraction as well as basic Boolean oper-

ations like bit-wise negation, bit shifting, and so forth. Here are some examples,

written in typical machine language syntax:

ADD R2,R1,R3 // R2<---R1+R3 where R1,R2,R3 are registers

ADD R2,R1,foo // R2<---R1+foo where foo stands for the

// value of the memory location pointed

// at by the user-defined label foo.

AND R1,R1,R2 // R1<---bit wise And of R1 and R2

Memory Access Memory access commands fall into two categories. First, as we

have just seen, arithmetic and logical commands are allowed to operate not only on

registers, but also on selected memory locations. Second, all computers feature ex-

plicit load and store commands, designed to move data between registers and mem-

ory. These memory access commands may use several types of addressing modes—

ways of specifying the address of the required memory word. As usual, different

computers offer different possibilities and different notations, but the following three

memory access modes are almost always supported:

m Direct addressing The most common way to address the memory is to express a

specific address or use a symbol that refers to a specific address, as follows:
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LOAD R1,67 // R1<---Memory[67]

// Or, assuming that bar refers to memory address 67:

LOAD R1,bar // R1<---Memory[67]

m Immediate addressing This form of addressing is used to load constants—

namely, load values that appear in the instruction code: Instead of treating the nu-

meric field that appears in the instruction as an address, we simply load the value of

the field itself into the register, as follows:

LOADI R1,67 // R1<---67

m Indirect addressing In this addressing mode the address of the required memory

location is not hard-coded into the instruction; instead, the instruction specifies a

memory location that holds the required address. This addressing mode is used to

handle pointers. For example, consider the high-level command x=foo[j], where

foo is an array variable and x and j are integer variables. What is the machine lan-

guage equivalent of this command? Well, when the array foo is declared and ini-

tialized in the high-level program, the compiler allocates a memory segment to hold

the array data and makes the symbol foo refer to the base address of that segment.

Now, when the compiler later encounters references to array cells like foo[j], it

translates them as follows. First, note that the jth array entry should be physically

located in a memory location that is at a displacement j from the array’s base ad-

dress (assuming, for simplicity, that each array element uses a single word). Hence

the address corresponding to the expression foo[j] can be easily calculated by add-

ing the value of j to the value of foo. Thus in the C programming language, for ex-

ample, a command like x=foo[j] can be also expressed as x=*(foo+j), where the

notation ‘‘*n’’ stands for ‘‘the value of Memory[n]’’. When translated into machine

language, such commands typically generate the following code (depending on the

assembly language syntax):

// Translation of x=foo[j] or x=*(foo+j):

ADD R1,foo,j // R1<---foo+j

LOAD* R2,R1 // R2<---Memory[R1]

STR R2,x // x<---R2

Flow of Control While programs normally execute in a linear fashion, one com-

mand after the other, they also include occasional branches to locations other than

the next command. Branching serves several purposes including repetition ( jump
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backward to the beginning of a loop), conditional execution (if a Boolean condition is

false, jump forward to the location after the ‘‘if-then’’ clause), and subroutine calling

( jump to the first command of some other code segment). In order to support these

programming constructs, every machine language features the means to jump to

selected locations in the program, both conditionally and unconditionally. In assem-

bly languages, locations in the program can also be given symbolic names, using

some syntax for specifying labels. Figure 4.1 illustrates a typical example.

Unconditional jump commands like JMP beginWhile specify only the address of

the target location. Conditional jump commands like JNG R1,endWhile must also

specify a Boolean condition, expressed in some way. In some languages the condition

is an explicit part of the command, while in others it is a by-product of executing a

previous command.

This ends our informal introduction to machine languages and the generic oper-

ations that they normally support. The next section gives a formal description of one

specific machine language—the native code of the computer that we will build in

chapter 5.

4.2 Hack Machine Language Specification

4.2.1 Overview

The Hack computer is a von Neumann platform. It is a 16-bit machine, consisting

of a CPU, two separate memory modules serving as instruction memory and data

memory, and two memory-mapped I/O devices: a screen and a keyboard.

High-level Low-level

// A while loop:

while (R1>=0) {

code segment 1

}

code segment 2

// Typical translation:

beginWhile:

JNG R1,endWhile // If R1<0 goto endWhile

// Translation of code segment 1 comes here

JMP beginWhile // Goto beginWhile

endWhile:

// Translation of code segment 2 comes here

Figure 4.1 High- and low-level branching logic. The syntax of goto commands varies from
one language to another, but the basic idea is the same.
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Memory Address Spaces The Hack programmer is aware of two distinct address

spaces: an instruction memory and a data memory. Both memories are 16-bit wide

and have a 15-bit address space, meaning that the maximum addressable size of each

memory is 32K 16-bit words.

The CPU can only execute programs that reside in the instruction memory. The

instruction memory is a read-only device, and programs are loaded into it using some

exogenous means. For example, the instruction memory can be implemented in a

ROM chip that is pre-burned with the required program. Loading a new program is

done by replacing the entire ROM chip, similar to replacing a cartridge in a game

console. In order to simulate this operation, hardware simulators of the Hack plat-

form must provide a means to load the instruction memory from a text file contain-

ing a machine language program.

Registers The Hack programmer is aware of two 16-bit registers called D and A.

These registers can be manipulated explicitly by arithmetic and logical instructions

like A=D-1 or D=!A (where ‘‘!’’ means a 16-bit Not operation). While D is used

solely to store data values, A doubles as both a data register and an address register.

That is to say, depending on the instruction context, the contents of A can be inter-

preted either as a data value, or as an address in the data memory, or as an address

in the instruction memory, as we now explain.

First, the A register can be used to facilitate direct access to the data memory

(which, from now on, will be often referred to as ‘‘memory’’). Since Hack instruc-

tions are 16-bit wide, and since addresses are specified using 15 bits, it is impossible

to pack both an operation code and an address in one instruction. Thus, the syntax

of the Hack language mandates that memory access instructions operate on an

implicit memory location labeled ‘‘M’’, for example, D=M+1. In order to resolve this

address, the convention is that M always refers to the memory word whose address is

the current value of the A register. For example, if we want to effect the operation

D ¼ Memory[516]� 1, we have to use one instruction to set the A register to 516,

and a subsequent instruction to specify D=M-1.

In addition, the hardworking A register is also used to facilitate direct access to

the instruction memory. Similar to the memory access convention, Hack jump

instructions do not specify a particular address. Instead, the convention is that any

jump operation always effects a jump to the instruction located in the memory word

addressed by A. Thus, if we want to effect the operation goto 35, we use one in-

struction to set A to 35, and a second instruction to code a goto command, without

specifying an address. This sequence causes the computer to fetch the instruction

located in InstructionMemory[35] in the next clock cycle.
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Example Since the Hack language is self-explanatory, we start with an example.

The only non-obvious command in the language is @value, where value is either a

number or a symbol representing a number. This command simply stores the speci-

fied value in the A register. For example, if sum refers to memory location 17, then

both @17 and @sum will have the same effect: A<---17.

And now to the example: Suppose we want to add the integers 1 to 100, using re-

petitive addition. Figure 4.2 gives a C language solution and a possible compilation

into the Hack language.

Although the Hack syntax is more accessible than that of most machine lan-

guages, it may still look obscure to readers who are not familiar with low-level pro-

gramming. In particular, note that every operation involving a memory location

requires two Hack commands: One for selecting the address on which we want to

operate, and one for specifying the desired operation. Indeed, the Hack language

consists of two generic instructions: an address instruction, also called A-instruction,

and a compute instruction, also called C-instruction. Each instruction has a binary

representation, a symbolic representation, and an effect on the computer, as we now

specify.

4.2.2 The A-Instruction

The A-instruction is used to set the A register to a 15-bit value:

A-instruction: @value // Where value is either a non-negative decimal number

// or a symbol referring to such number.

value (v ¼ 0 or 1)

Binary: 0 v v v v v v v v v v v v v v v

This instruction causes the computer to store the specified value in the A register. For

example, the instruction @5, which is equivalent to 0000000000000101, causes the

computer to store the binary representation of 5 in the A register.

The A-instruction is used for three different purposes. First, it provides the only

way to enter a constant into the computer under program control. Second, it sets the

stage for a subsequent C-instruction designed to manipulate a certain data memory

location, by first setting A to the address of that location. Third, it sets the stage for

a subsequent C-instruction that specifies a jump, by first loading the address of the

jump destination to the A register. These uses are demonstrated in figure 4.2.
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C language Hack machine language

// Adds 1+...+100.

int i = 1;

int sum = 0;

While (i <= 100){

sum += i;

i++;

}

// Adds 1+...+100.

@i // i refers to some mem. location.

M=1 // i=1

@sum // sum refers to some mem. location.

M=0 // sum=0

(LOOP)

@i

D=M // D=i

@100

D=D-A // D=i-100

@END

D;JGT // If (i-100)>0 goto END

@i

D=M // D=i

@sum

M=D+M // sum=sum+i

@i

M=M+1 // i=i+1

@LOOP

0;JMP // Goto LOOP

(END)

@END

0;JMP // Infinite loop

Figure 4.2 C and assembly versions of the same program. The infinite loop at the program’s
end is our standard way to ‘‘terminate’’ the execution of Hack programs.
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4.2.3 The C-Instruction

The C-instruction is the programming workhorse of the Hack platform—the in-

struction that gets almost everything done. The instruction code is a specification

that answers three questions: (a) what to compute, (b) where to store the computed

value, and (c) what to do next? Along with the A-instruction, these specifications

determine all the possible operations of the computer.

C-instruction: dest¼comp;jump // Either the dest or jump fields may be empty.

// If dest is empty, the ‘‘¼’’ is omitted;

// If jump is empty, the ‘‘;’’ is omitted.

comp dest jump

Binary: 1 1 1 a c1 c2 c3 c4 c5 c6 d1 d2 d3 j1 j2 j3

The leftmost bit is the C-instruction code, which is 1. The next two bits are not

used. The remaining bits form three fields that correspond to the three parts of the

instruction’s symbolic representation. The overall semantics of the symbolic instruc-

tion dest ¼ comp;jump is as follows. The comp field instructs the ALU what to com-

pute. The dest field instructs where to store the computed value (ALU output). The

jump field specifies a jump condition, namely, which command to fetch and execute

next. We now describe the format and semantics of each of the three fields.

The Computation Specification The Hack ALU is designed to compute a fixed set

of functions on the D, A, and M registers (where M stands for Memory[A]). The

computed function is specified by the a-bit and the six c-bits comprising the instruc-

tion’s comp field. This 7-bit pattern can potentially code 128 different functions, of

which only the 28 listed in figure 4.3 are documented in the language specification.

Recall that the format of the C-instruction is 111a cccc ccdd djjj. Suppose we

want to have the ALU compute D-1, the current value of the D register minus 1.

According to figure 4.3, this can be done by issuing the instruction 1110 0011 1000

0000 (the 7-bit operation code is in bold). To compute the value of D|M, we issue the

instruction 1111 0101 0100 0000. To compute the constant �1, we issue the in-

struction 1110 1110 1000 0000, and so on.

The Destination Specification The value computed by the comp part of the C-

instruction can be stored in several destinations, as specified by the instruction’s 3-bit
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dest part (see figure 4.4). The first and second d-bits code whether to store the com-

puted value in the A register and in the D register, respectively. The third d-bit codes

whether to store the computed value in M (i.e., in Memory[A]). One, more than one,

or none of these bits may be asserted.

Recall that the format of the C-instruction is 111a cccc ccdd djjj. Suppose

we want the computer to increment the value of Memory[7] by 1 and to also store the

result in the D register. According to figures 4.3 and 4.4, this can be accomplished by

the following instructions:

0000 0000 0000 0111 // @7

1111 1101 1101 1000 // MD=M+1

(when a=0)

comp mnemonic
c1 c2 c3 c4 c5 c6

(when a=1)

comp mnemonic

0 1 0 1 0 1 0

1 1 1 1 1 1 1

-1 1 1 1 0 1 0

D 0 0 1 1 0 0

A 1 1 0 0 0 0 M

!D 0 0 1 1 0 1

!A 1 1 0 0 0 1 !M

-D 0 0 1 1 1 1

-A 1 1 0 0 1 1 -M

D+1 0 1 1 1 1 1

A+1 1 1 0 1 1 1 M+1

D-1 0 0 1 1 1 0

A-1 1 1 0 0 1 0 M-1

D+A 0 0 0 0 1 0 D+M

D-A 0 1 0 0 1 1 D-M

A-D 0 0 0 1 1 1 M-D

D&A 0 0 0 0 0 0 D&M

D|A 0 1 0 1 0 1 D|M

Figure 4.3 The compute field of the C-instruction. D and A are names of registers. M refers to
the memory location addressed by A, namely, to Memory[A]. The symbols þ and � denote
16-bit 2’s complement addition and subtraction, while !, |, and & denote the 16-bit bit-wise
Boolean operators Not, Or, and And, respectively. Note the similarity between this instruction
set and the ALU specification given in figure 2.6.
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The first instruction causes the computer to select the memory register whose address

is 7 (the so-called M register). The second instruction computes the value of Mþ 1

and stores the result in both M and D.

The Jump Specification The jump field of the C-instruction tells the computer what

to do next. There are two possibilities: The computer should either fetch and execute

the next instruction in the program, which is the default, or it should fetch and exe-

cute an instruction located elsewhere in the program. In the latter case, we assume

that the A register has been previously set to the address to which we have to jump.

Whether or not a jump should actually materialize depends on the three j-bits of

the jump field and on the ALU output value (computed according to the comp field).

The first j-bit specifies whether to jump in case this value is negative, the second j-bit

in case the value is zero, and the third j-bit in case it is positive. This gives eight

possible jump conditions, shown in figure 4.5.

The following example illustrates the jump commands in action:

Logic Implementation

if Memory[3]=5 then goto 100

else goto 200

@3

D=M // D=Memory[3]

@5

D=D-A // D=D-5

@100

D;JEQ // If D=0 goto 100

@200

0;JMP // Goto 200

d1 d2 d3 Mnemonic Destination (where to store the computed value)

0 0 0 null The value is not stored anywhere

0 0 1 M Memory[A] (memory register addressed by A)

0 1 0 D D register

0 1 1 MD Memory[A] and D register

1 0 0 A A register

1 0 1 AM A register and Memory[A]

1 1 0 AD A register and D register

1 1 1 AMD A register, Memory[A], and D register

Figure 4.4 The dest field of the C-instruction.
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The last instruction (0;JMP) effects an unconditional jump. Since the C-instruction

syntax requires that we always effect some computation, we instruct the ALU to

compute 0 (an arbitrary choice), which is ignored.

Conflicting Uses of the A Register As was just illustrated, the programmer can use

the A register to select either a data memory location for a subsequent C-instruction

involving M, or an instruction memory location for a subsequent C-instruction

involving a jump. Thus, to prevent conflicting use of the A register, in well-written

programs a C-instruction that may cause a jump (i.e., with some non-zero j bits)

should not contain a reference to M, and vice versa.

4.2.4 Symbols

Assembly commands can refer to memory locations (addresses) using either con-

stants or symbols. Symbols are introduced into assembly programs in the following

three ways:

m Predefined symbols: A special subset of RAM addresses can be referred to by

any assembly program using the following predefined symbols:

� Virtual registers: To simplify assembly programming, the symbols R0 to R15 are

predefined to refer to RAM addresses 0 to 15, respectively.

� Predefined pointers: The symbols SP, LCL, ARG, THIS, and THAT are predefined

to refer to RAM addresses 0 to 4, respectively. Note that each of these memory

j1

(out < 0)

j2

(out ¼ 0)

j3

(out > 0)
Mnemonic Effect

0 0 0 null No jump

0 0 1 JGT If out > 0 jump

0 1 0 JEQ If out ¼ 0 jump

0 1 1 JGE If outb 0 jump

1 0 0 JLT If out < 0 jump

1 0 1 JNE If out0 0 jump

1 1 0 JLE If outa 0 jump

1 1 1 JMP Jump

Figure 4.5 The jump field of the C-instruction. Out refers to the ALU output (resulting from
the instruction’s comp part), and jump implies ‘‘continue execution with the instruction
addressed by the A register.’’

69 Machine Language



locations has two labels. For example, address 2 can be referred to using either R2 or

ARG. This syntactic convention will come to play in the implementation of the virtual

machine, discussed in chapters 7 and 8.

� I/O pointers: The symbols SCREEN and KBD are predefined to refer to RAM

addresses 16384 (0x4000) and 24576 (0x6000), respectively, which are the base

addresses of the screen and keyboard memory maps. The use of these I/O devices is

explained later.

m Label symbols: These user-defined symbols, which serve to label destinations of

goto commands, are declared by the pseudo-command ‘‘(Xxx)’’. This directive

defines the symbol Xxx to refer to the instruction memory location holding the next

command in the program. A label can be defined only once and can be used any-

where in the assembly program, even before the line in which it is defined.

m Variable symbols: Any user-defined symbol Xxx appearing in an assembly pro-

gram that is not predefined and is not defined elsewhere using the ‘‘(Xxx)’’ com-

mand is treated as a variable, and is assigned a unique memory address by the

assembler, starting at RAM address 16 (0x0010).

4.2.5 Input/Output Handling

The Hack platform can be connected to two peripheral devices: a screen and a key-

board. Both devices interact with the computer platform through memory maps.

This means that drawing pixels on the screen is achieved by writing binary values

into a memory segment associated with the screen. Likewise, listening to the key-

board is done by reading a memory location associated with the keyboard. The

physical I/O devices and their memory maps are synchronized via continuous refresh

loops.

Screen The Hack computer includes a black-and-white screen organized as 256

rows of 512 pixels per row. The screen’s contents are represented by an 8K memory

map that starts at RAM address 16384 (0x4000). Each row in the physical screen,

starting at the screen’s top left corner, is represented in the RAM by 32 consecu-

tive 16-bit words. Thus the pixel at row r from the top and column c from the left

is mapped on the c%16 bit (counting from LSB to MSB) of the word located at

RAM[16384þ r � 32þ c=16]. To write or read a pixel of the physical screen, one

reads or writes the corresponding bit in the RAM-resident memory map (1 ¼ black,

0 ¼ white). Example:
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// Draw a single black dot at the screen's top left corner:

@SCREEN // Set the A register to point to the memory

// word that is mapped to the 16 left-most

// pixels of the top row of the screen.

M=1 // Blacken the left-most pixel.

Keyboard The Hack computer interfaces with the physical keyboard via a

single-word memory map located in RAM address 24576 (0x6000). Whenever

a key is pressed on the physical keyboard, its 16-bit ASCII code appears in

RAM[24576]. When no key is pressed, the code 0 appears in this location. In

addition to the usual ASCII codes, the Hack keyboard recognizes the keys shown in

figure 4.6.

4.2.6 Syntax Conventions and File Format

Binary Code Files A binary code file is composed of text lines. Each line is a se-

quence of sixteen ‘‘0’’ and ‘‘1’’ ASCII characters, coding a single machine language

instruction. Taken together, all the lines in the file represent a machine language

program. The contract is such that when a machine language program is loaded into

the computer’s instruction memory, the binary code represented by the file’s nth line

is stored in address n of the instruction memory (the count of both program lines and

memory addresses starts at 0). By convention, machine language programs are stored

in text files with a ‘‘hack’’ extension, for example, Prog.hack.

Assembly Language Files By convention, assembly language programs are stored

in text files with an ‘‘asm’’ extension, for example, Prog.asm. An assembly language

Key pressed Code Key pressed Code

newline 128 end 135

backspace 129 page up 136

left arrow 130 page down 137

up arrow 131 insert 138

right arrow 132 delete 139

down arrow 133 esc 140

home 134 f1–f12 141–152

Figure 4.6 Special keyboard codes in the Hack platform.
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file is composed of text lines, each representing either an instruction or a symbol

declaration:

m Instruction: an A-instruction or a C-instruction.

m (Symbol): This pseudo-command causes the assembler to assign the label

Symbol to the memory location in which the next command of the program will be

stored. It is called ‘‘pseudo-command’’ since it generates no machine code.

(The remaining conventions in this section pertain to assembly programs only.)

Constants and Symbols Constants must be non-negative and are always written in

decimal notation. A user-defined symbol can be any sequence of letters, digits, un-

derscore (_), dot (.), dollar sign ($), and colon (:) that does not begin with a digit.

Comments Text beginning with two slashes (//) and ending at the end of the line is

considered a comment and is ignored.

White Space Space characters are ignored. Empty lines are ignored.

Case Conventions All the assembly mnemonics must be written in uppercase. The

rest (user-defined labels and variable names) is case sensitive. The convention is to

use uppercase for labels and lowercase for variable names.

4.3 Perspective

The Hack machine language is almost as simple as machine languages get. Most

computers have more instructions, more data types, more registers, more instruction

formats, and more addressing modes. However, any feature not supported by the

Hack machine language may still be implemented in software, at a performance cost.

For example, the Hack platform does not supply multiplication and division as

primitive machine language operations. Since these operations are obviously required

by any high-level language, we will later implement them at the operating system

level (chapter 12).

In terms of syntax, we have chosen to give Hack a somewhat different look-and-

feel than the mechanical nature of most assembly languages. In particular, we have

chosen a high-level language-like syntax for the C-command, for example, D=M

and D=D+M instead of the more traditional LOAD and ADD directives. The reader
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should note, however, that these are just syntactic details. For example, the + char-

acter plays no algebraic role whatsoever in the command D=D+M. Rather, the three-

character string D+M, taken as a whole, is treated as a single assembly mnemonic,

designed to code a single ALU operation.

One of the main characteristics that gives machine languages their particular flavor

is the number of memory addresses that can appear in a single command. In this

respect, Hack may be described as a ‘‘12 address machine’’: Since there is no room to

pack both an instruction code and a 15-bit address in the 16-bit instruction format,

operations involving memory access will normally be specified in Hack using two

instructions: an A-instruction to specify the address and a C-instruction to specify the

operation. In comparison, most machine languages can directly specify at least one

address in every machine instruction.

Indeed, Hack assembly code typically ends up being (mostly) an alternating

sequence of A- and C-instructions, for example, @xxx followed by D=D+M, @YYY fol-

lowed by 0;JMP, and so on. If you find this coding style tedious or even peculiar, you

should note that friendlier macro commands like D=D+M[xxx] and GOTO YYY can

easily be introduced into the language, causing Hack assembly code to be more

readable as well as about 50 percent shorter. The trick is to have the assembler

translate these macro commands into binary code effecting @xxx followed by D=D+M,

@YYY followed by 0;JMP, and so on.

The assembler, mentioned several times in this chapter, is the program responsible

for translating symbolic assembly programs into executable programs written in bi-

nary code. In addition, the assembler is responsible for managing all the system- and

user-defined symbols found in the assembly program, and for replacing them with

physical memory addresses, as needed. We return to this translation task in chapter

6, in which we build an assembler for the Hack language.

4.4 Project

Objective Get a taste of low-level programming in machine language, and get

acquainted with the Hack computer platform. In the process of working on this

project, you will also become familiar with the assembly process, and you will ap-

preciate visually how the translated binary code executes on the target hardware.

Resources In this project you will use two tools supplied with the book: An assem-

bler, designed to translate Hack assembly programs into binary code, and a CPU

emulator, designed to run binary programs on a simulated Hack platform.
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Contract Write and test the two programs described in what follows. When exe-

cuted on the CPU emulator, your programs should generate the results mandated by

the test scripts supplied in the project directory.

m Multiplication Program (Mult.asm): The inputs of this program are the current

values stored in R0 and R1 (i.e., the two top RAM locations). The program computes

the product R0*R1 and stores the result in R2. We assume (in this program) that

R0>=0, R1>=0, and R0*R1<32768. Your program need not test these conditions, but

rather assume that they hold. The supplied Mult.tst and Mult.cmp scripts will test

your program on several representative data values.

m I/O-Handling Program (Fill.asm): This program runs an infinite loop that

listens to the keyboard input. When a key is pressed (any key), the program

blackens the screen, namely, writes ‘‘black’’ in every pixel. When no key is

pressed, the screen should be cleared. You may choose to blacken and clear

the screen in any spatial order, as long as pressing a key continuously for long

enough will result in a fully blackened screen and not pressing any key for

long enough will result in a cleared screen. This program has a test script (Fill.tst)

but no compare file—it should be checked by visibly inspecting the simulated

screen.

Steps We recommend proceeding as follows:

0. The assembler and CPU emulator programs needed for this project are available

in the tools directory of the book’s software suite. Before using them, go through

the assembler tutorial and the CPU emulator tutorial.

1. Use a plain text editor to write the first program in assembly, and save it as

projects/04/mult/Mult.asm.

2. Use the supplied assembler (in either batch or interactive mode) to translate your

program. If you get syntax errors, go to step 1. If there are no syntax errors, the

assembler will produce a file called projects/04/mult/Mult.hack, containing bi-

nary machine instructions.

3. Use the supplied CPU emulator to test the resulting Mult.hack code. This can

be done either interactively, or batch-style using the supplied Mult.tst script. If you

get run-time errors, go to step 1.

4. Repeat stages 1–3 for the second program (Fill.asm), using the projects/04/

fill directory.
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Debugging Tip The Hack language is case sensitive. A common error occurs when

one writes, say, @foo and @Foo in different parts of the program, thinking that both

commands refer to the same variable. In fact, the assembler treats these symbols as

two completely different identifiers.

The Supplied Assembler The book’s software suite includes a Hack assembler that

can be used in either command mode or GUI mode. The latter mode of operation

allows observing the translation process in a visual and step-wise fashion, as shown

in figure 4.7.

The machine language programs produced by the assembler can be tested in

two different ways. First, one can run the .hack program in the CPU emulator.

Figure 4.7 The visual assembler supplied with the book.
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Alternatively, one can run the same program directly on the hardware, by loading it

into the computer’s instruction memory using the hardware simulator. Since we will

finish building the hardware platform only in the next chapter, the former option

makes more sense at this stage.

The Supplied CPU Emulator This program simulates the Hack computer platform.

It allows loading a Hack program into the simulated ROM and visually observing its

execution on the simulated hardware, as shown in figure 4.8.

Figure 4.8 The CPU emulator supplied with the book. The loaded program can be displayed
either in symbolic notation (as shown in this screen shot) or in binary code. The screen and the
keyboard are not used by this particular program.
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For ease of use, the CPU emulator enables loading binary .hack files as well as

symbolic .asm files. In the latter case, the emulator translates the assembly program

into binary code on the fly. This utility seems to render the supplied assembler un-

necessary, but this is not the case. First, the supplied assembler shows the translation

process visually, for instructive purposes. Second, the binary files generated by the

assembler can be executed directly on the hardware platform. To do so, load the

Computer chip (built in chapter 5’s project) into the hardware simulator, then load

the .hack file generated by the assembler into the computer’s ROM chip.
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5 Computer Architecture1 

This chapter is the pinnacle of the hardware part of our journey. We are now ready to take all 

the chips that we’ve built in chapters 1–3 and integrate them into a general-purpose computer 

system capable of running programs written in the machine language presented in chapter 4. 

The specific computer we will build, called Hack, has two important virtues. On the one hand, 

Hack is a simple machine that can be constructed in just a few hours, using previously built 

chips and the hardware simulator supplied with the book. On the other hand, Hack is 

sufficiently powerful to illustrate the key operating principles and hardware elements of any 

general-purpose computer. Therefore, building it will give you an excellent understanding of 

how modern computers work at the low hardware and software levels. 

 Section 5.1 begins with an overview of the von Neumann architecture — a central 

dogma in computer science underlying the design of almost all modern computers. The Hack 

platform is a von Neumann machine variant, and section 5.2 gives its exact hardware 

specification. Section 5.3 describes how the Hack platform can be implemented from previously 

built chips, in particular the ALU built in project 2 and the registers and memory systems built 

in project 3.  Section 5.4 compares the Hack machine with industrial-strength computers, and 

emphasizes the critical role that optimization plays in the latter. Section 5.5 gives an overview 

of the computer construction project. 

The computer that will emerge from this project will be as simple as possible, but not 

simpler. On the one hand, the computer will be based on a minimal and compact hardware 

configuration. On the other hand, this configuration will be sufficiently powerful for executing 

programs written in a Java-like programming language, delivering a reasonable performance 

and a satisfying user experience.  
                                                
1 Chapter 5 from The Elements of Computing Systems by Noam Nisan and Shimon Schocken, 
Second Edition, MIT Press, forthcoming 2017. 
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5.1 Computer Architecture Fundamentals 

5.1.1 The Stored Program Concept 

Compared to all the other machines around us, the most unique feature of the digital computer 

is its amazing versatility. Here is a machine with finite hardware that can perform an infinite 

number of tasks, from playing games to publishing books to designing airplanes. This 

remarkable versatility—a boon that we have come to take for granted—is the fruit of a brilliant 

idea called the stored program concept. Formulated independently by several scientists and 

engineers in the 1930s, the stored program concept is still considered the most profound 

invention in, if not the very foundation of, modern computer science. 

 Like many scientific breakthroughs, the basic idea is remarkably simple. The computer 

is based on a fixed hardware platform, capable of executing a fixed repertoire of very simple 

instructions. At the same time, these instructions can be combined like building blocks, yielding 

arbitrarily sophisticated programs. Moreover, the logic of these programs is not embedded in 

the hardware, as it was in mechanical computers predating 1930. Instead, the program’s code is 

temporarily stored and manipulated in the computer’s memory, just like data, becoming what is 

known as “software.” Since the computer’s operation manifests itself to the user through the 

currently executing software, the same hardware platform can be made to behave completely 

differently each time it is loaded with a different program. 

5.1.2 The von Neumann Architecture 

The stored program concept is a key element of many abstract and practical computer models, 

most notably the universal Turing machine (1936) and the von Neumann machine (1945). The 

Turing machine—an abstract artifact describing a deceptively simple computer—is used mainly 

in theoretical computer science, for analyzing the logical foundations of computational 
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problems and solutions. In contrast, the von Neumann machine is a practical architecture and 

the conceptual blueprint of almost all computer platforms today. 

 The von Neumann architecture, shown in diagram 5.1, is based on a central processing 

unit (CPU), interacting with a memory device, receiving data from some input device, and 

sending data to some output device. At the heart of this architecture lies the stored program 

concept: The computer’s memory stores not only the data that the computer manipulates, but 

also the very instructions that tell the computer what to do. Let us explore this architecture in 

some detail. 

 

 
Diagram 5.1: the von Neumann architecture 
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5.1.3 Memory 

Like other hardware elements, the memory unit can be discussed from a physical perspective 

and from a logical perspective. Physically, the memory is a linear sequence of addressable 

registers, each having a unique address and a value, which is a fixed-size word of information. 

Logically, the memory is divided into two areas. One area is dedicated for storing data, e.g. the 

arrays and objects of programs that are presently executing, while the other area is dedicated for 

storing the programs’ instructions. Although all these “data words” and “instruction words” 

look exactly the same physically, they serve very different purposes. 

In some von Neumann architecture variants, the data memory and the instruction memory 

are managed within the same physical memory unit, as was just explained. In other variants, the 

data memory and the instruction memory are kept in separate physical memory units that have 

distinct address spaces. This setting, sometimes referred to as ”Harvard architecture”, is also the 

architecture of our Hack computer. Both variants have certain advantages that will be discussed 

later in the chapter. 

All the memory registers—irrespective of their roles—are accessed in the same way: in 

order to manipulate a particular memory register, one must first select the register by supplying 

an address. This action provides an immediate access to the register’s data. The term Random 

Access Memory (RAM) is often used to denote the important fact that each randomly selected 

register can be reached in the same access time, irrespective of the memory size and the 

register’s location in it. 

Data Memory: High-level programs manipulate abstract artifacts like variables, arrays, and 

objects. After the programs are translated into machine language, these data abstractions 

become binary codes, stored in the computer’s memory. Once an individual register has been 
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selected from the memory by specifying its address, its contents can be either read or written to. 

In the former case, we retrieve the value of the selected register. In the latter case, we store a 

new value in the selected register, overriding the previous value. Such memories are sometimes 

referred to as “read/write” memories. 

Instruction Memory: Before high-level programs can be executed on the computer, they must 

be translated into machine language. Following this translation, each high-level statement 

becomes a series of one or more machine language instructions. These instructions are stored in 

the computer’s instruction memory as binary codes. In each step of a program’s execution, the 

CPU fetches (i.e., reads) a binary machine instruction from a selected register in the instruction 

memory, decodes it, executes the specified instruction, and figures out which instruction to 

fetch and execute next. 

We see that before executing a particular program, we must first load the program’s code 

into the instruction memory, typically from some peripheral mass storage device like a disk. 

Given the compact and highly focused perspective of a von Neumann machine, how a program 

is loaded into the computer’s instruction memory is considered an external issue. What’s 

important is that when the CPU is called upon to execute a program, the program’s code will 

already reside in memory, one way or another. As you saw in chapter 4, the act of loading a 

program into the instruction memory from an external text file is supported by the supplied 

CPU emulator. 

5.1.4 Central Processing Unit 

The CPU—the centerpiece of the computer’s architecture—is in charge of executing the 

instructions of the currently loaded program. These instructions tell the CPU which calculation 

it has to perform, which registers is has to read from or write to, and which instruction it has to 

fetch and execute next. The CPU executes these tasks using three main hardware elements: an 

Arithmetic-Logic Unit (ALU), a set of registers, and a control unit. 
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Arithmetic Logic Unit: The ALU chip is built to perform all the low-level arithmetic and 

logical operations featured by the computer. For example, a typical ALU can add two numbers, 

compute a bitwise And function on two numbers, compare two numbers, and so on. How much 

functionality an ALU should have is a matter of need, budget, energy, and similar cost-

effectiveness considerations. Any function not supported by the ALU as a primitive hardware 

operation can be later realized by the computer’s system software (yielding a slower 

implementation, of course). 

Registers: Since the CPU is the computer’s centerpiece, it must perform as efficiently as 

possible. In order to boost performance, it is desirable to store the intermediate results that 

computer programs generate locally, close to the ALU, rather than ship them in and out of the 

CPU chip and store them in some remote and separate RAM chip. Thus, a CPU is typically 

equipped with a small set of 2 up to 32 resident high-speed registers, each capable of holding a 

single word.  

Control Unit: A computer instruction is represented as a binary code, typically 16, 32, or 64 

bits wide. Before such an instruction can be executed, it must be decoded, and the information 

embedded in it must be used to signal various hardware devices (ALU, registers, memory) how 

to execute the instruction. The instruction decoding is done by some control unit, which is also 

responsible for figuring out which instruction to fetch and execute next. 

The CPU operation can now be described as a repeated loop: decode the current 

instruction, execute it, figure out which instruction to execute next, fetch it, decode it, and so on. 

This process is sometimes referred to as the “fetch-execute cycle”. 

5.1.5  Registers 

When talking about computer hardware, the term “register” is used quite liberally to refer to any 

device capable of storing a chunk of bits that represents some stand-alone value like a variable 
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value, an instruction, or an address. According to this broad definition, any memory location is 

in fact a register, and so of course are the registers that reside inside the CPU. This section is 

dedicated to a discussion of these CPU-resident registers. 

Suppose we didn’t have any CPU-resident registers. This would imply that any CPU 

operation that requires inputs or outputs would have to rely on memory access. Let us consider 

what each such memory access entails. First, some address value travels from the CPU to the 

RAM’s address input. Next, the RAM’s direct-access logic uses the supplied address to select a 

specific memory register. Finally, the register’s contents either travels back to the CPU (a read 

operation), or is replaced by some additional value that travels from the CPU (a write operation). 

Note that this elaborate process involves at least two separate chips, an address bus, and a 

data bus, resulting in an expensive and time-consuming operation. This stands in sharp contract 

to the ALU, which is a lean and mean combinational machine. Thus we have a lightning fast 

calculator that depends on a sluggish data store for supplying inputs and consuming outputs. 

The result may well lead to what is sometimes called starvation, which is what happens when a 

processor is denied the resources it needs to complete its work.  

Clearly, if we could have placed a few high-speed registers inside the CPU itself, right 

next to the ALU, we could have saved ourselves a great deal of time and overhead. There is 

another, subtle but critically important advantage for using CPU-resident registers. In order to 

specify an instruction that includes a memory register, like Memory[addr]=value, we must 

supply a memory address, which typically requires many bits. In the 16-bit Hack platform, this 

technical detail alone forces us to use two machine instructions, and two clock cycles, even for 

preforming mundane tasks like Memory[addr]=0 or Memory[addr]=1. 

In contrast, since there are normally only a few CPU-resident registers, identifying each 

one of them requires only a few bits. Therefore, an operation like someCPURegister=0 or 
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someCPURegister=1 requires only one machine instruction, and one cycle. To sum up, CPU-

resident registers save unnecessary memory access, and allow using thinner instruction formats, 

resulting in faster throughput. The remainder of this section describes the registers that CPU’s 

typically use. 

Data registers: These registers give the CPU short-term memory services. For example, if a 

program wants to calculate (a − b) ⋅ c, we must first compute and remember the value of (a − b). 

In principle, this temporary result can be stored in some memory register. Clearly, a much more 

sensible solution is to store it locally inside the CPU, using a data register. Typically, CPU’s 

use at least one and up to 32 data registers. 

Address registers: Many machine language instructions involve memory access: reading data, 

writing data, and fetching instructions. In any one of these operations, we must specify which 

memory register we wish to operate on. This is done by supplying an address. In some cases, 

the address is coded as part of the instruction, while in other cases the address is specified, or 

computed, by some previous instruction. In the latter case, the address must be stored 

somewhere. This is done using a CPU-resident chip called address register. 

Unlike regular registers, the output of an address register is typically connected to the 

address input of a memory device. Therefore, placing a value in the address register has the side 

effect of selecting a particular memory register, and this register makes itself available to 

subsequent instructions designed to manipulate it. For example, suppose we wish to set 

Memory[17] to 1. In the Hack language, this can be done using the pair of instructions @17 

(which sets A=17 and makes the M mnemonic stand for Memory[17]), followed by M=1 (which 

sets the selected memory register to 1). 

In addition to supporting this fundamental addressing operation, an address register is, 

well, a register. Therefore, if needed, it can be used as yet another data register. For example, 
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suppose we wish to set the D register to 17. This can be done using the pair of instructions @17, 

followed by D=A. Here we use A not as an address register, but rather as a data register. The fact 

that Memory[17] was selected as a side effect of @17 is completely ignored. 

Program counter: When executing a program, the CPU must always keep track of the address 

of the instruction that must be fetched and executed next. This address is kept in a special 

register called program counter, or PC. The contents of the PC is computed and updated as a 

side effect of executing the current instruction, as we elaborate later in the chapter. 

5.1.6 Input and Output 

Computers interact with their external environments using a diverse array of input and output 

(I/O) devices. These include screens, keyboards, disks, printers, scanners, network interface 

cards, and so on, not to mention the bewildering array of proprietary components that embedded 

computers are called to control in automobiles, cameras, medical devices, and so on. There are 

two reasons why we don’t concern ourselves here with the low-level architecture of these 

various devices. First, every one of them represents a unique piece of machinery requiring a 

unique knowledge of engineering. Second, and for this very same reason, computer scientists 

have devised clever schemes to make all these different devices look exactly the same to the 

computer. The key trick in managing this complexity is called memory-mapped I/O. 

 The basic idea is to create a binary emulation of the I/O device, making it “look” to the 

CPU as if it were a regular memory segment. In particular, each I/O device is allocated an 

exclusive area in memory, becoming its “memory map.” In the case of an input device like a 

keyboard, the memory map is made to continuously reflect the physical state of the device: 

when the user presses a key on the keyboard, a binary code representing that key appears in the 

keyboard’s memory map. In the case of an output device like a screen, the screen is made to 

continuously reflect the state of its designated memory map: when we write a bit in the screen’s 
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memory map, a certain pixel turns on or off on the screen. The I/O devices are “refreshed” from 

the memory (and vice versa) several times per second, so the response time from the user’s 

perspective is almost instantaneous. Programmatically, the key implication is that computer 

programs can access any I/O device by simply manipulating selected registers in their 

designated memory areas. 

Obviously, this arrangement is based on several agreed-upon contracts. First, the data that 

drives each I/O device must be serialized, or “mapped”, on the computer’s memory, hence the 

name “memory map”.  For example, the screen, which can be viewed as a 2-dimensional grid of 

pixels, must be mapped on a 1-dimensional vector of fixed-size memory registers. Second, each 

I/O device is required to support some agreed-upon interaction protocol, so that programs will 

be able to access it in a predictable manner. For example, it should be decided, and agreed-upon, 

which binary codes should represent which keys on the keyboard. As a side comment, given the 

multitude of computer platforms, I/O devices, and different hardware and software vendors, one 

can appreciate the crucial role that standards play in determining these low-level interaction 

contracts. 

 The practical implications of a memory-mapped I/O architecture are significant: The 

design of the CPU and the overall platform can be totally independent of the number, nature, or 

make of the I/O devices that interact, or will interact, with the computer. Whenever we want to 

connect a new I/O device to the computer, all we have to do is allocate to it a new memory map 

and “take note” of its base address (these one-time configurations are typically done by the 

operating system). From this point onward, any program that wants to manipulate this I/O 

device can do so—all it needs to do is manipulate selected registers in the memory map 

designated to represent the device. 
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The architectural framework described thus far in the chapter is characteristic of any general-

purpose computer system. We now turn to describe one specific example of this architecture: 

the Hack computer. 

5.2 The Hack Hardware Platform: Specification 

5.2.1 Overview 

The Hack platform is a 16-bit von Neumann machine, designed to execute programs written in 

the Hack machine language presented in chapter 4. In order to do so, the Hack platform consists 

of a CPU, two separate memory modules serving as instruction memory and data memory, and 

two memory-mapped I/O devices: a screen and a keyboard.  

 The Hack computer executes programs that reside in an instruction memory. In physical 

implementations of the Hack platform, this memory can be implemented using a ROM chip that 

is pre-loaded with the required program. Software-based simulators of the Hack computer are 

expected to support this functionality by providing means for loading the instruction memory 

from a text file containing a program written in the Hack machine language. 

 The Hack CPU consists of the ALU built in project 2 and three registers called data 

register (D), address register (A), and program counter (PC), identical to the 16-bit registers 

built in project 3. While the D-register is used solely for storing data values, the A-register serves 

three different purposes, depending on the context in which it is used: storing a data value (just 

like the D-register), pointing at an address in the instruction memory, or pointing at an address 

in the data memory. More about this, later. 

The Hack CPU is designed to execute instructions written in the Hack machine language. 

These instructions have the 16-bit format “ixxaccccccdddjjj”. The i-bit (also known as 

opcode) codes the instruction type, which is either 0 for an A-instruction or 1 for a C-instruction. 

In case of an A-instruction, the instruction is treated as a 16-bit binary value which is loaded 
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into the A register. In case of a C-instruction, the instruction is treated as a sequence of control 

bits that determine which function the ALU should computer, and in which registers the 

computed value should be stored. In the course of executing any one of these instructions, the 

CPU also figures out which instruction in the program should be fetched and executed next. 

We now turn to specify the various components of the Hack hardware platform.  

5.2.2 Central Processing Unit (CPU) 

The CPU of the Hack platform is designed to execute 16-bit instructions according to the Hack 

machine language specification presented in chapter 4. The Hack CPU expects to be connected 

to two separate memory modules: an instruction memory, from which it fetches instructions for 

execution, and a data memory, from which it can read, and into which it can write, data values. 

Diagram 5.2 gives the complete CPU specification. 

5.2.3 Instruction Memory 

The Hack instruction memory is implemented in a direct-access Read-Only Memory device, 

also called ROM. The Hack ROM consists of 32K addressable 16-bit registers, as shown in 

diagram 5.3. 

5.2.4 Input / Output 

Access to the input/output devices of the Hack computer is made possible by the computer’s 

data memory, a read-write RAM device consisting of 32K addressable 16-bit registers. In 

addition to serving as the computer’s general-purpose data store, the data memory also 

interfaces between the CPU and the computer’s input/output devices, as we now turn to specify.  

In order to facilitate interaction with a user, the Hack platform can be connected to two 

peripheral devices: a screen and a keyboard. Both devices interact with the computer platform 

through memory-mapped buffers. Specifically, screen images can be drawn and probed by  
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/**	The Hack Central Processing Unit consists of an ALU, two registers named A and D, and a program 
counter named PC	(these	internal	chip-parts	are	not	shown	in	the	diagram). The inM 
input and outM output hold the values referred to as “M” in the Hack instruction syntax. The addressM 
output holds the memory address to which outM should be written. 

 The CPU is designed to fetch and execute instructions written in the Hack machine language. If 
instruction is an A-instruction, the CPU loads the 16-bit constant that the instruction represents into the 
A register. If instruction is a C-instruction, then (i) the CPU causes the ALU to perform the computation 
specified by the instruction, and (ii) the CPU causes this value to be stored in the subset of {A,D,M} registers 
specified by the instruction. If one of these registers is M, the CPU asserts the writeM control bit output 
(when writeM	is	0, any value may appear in outM).	

When the reset	input	is	0, the CPU uses the ALU output and the jump directive specified by the 
instruction to compute the address of the next instruction, and emits this address to the pc output. If the 
reset	input	is	1, the CPU sets pc to 0. 	

The outM and writeM outputs are combinational, and are affected instantaneously by the instruction’s 
execution. The addressM and pc outputs are clocked: although they are affected by the instruction’s 
execution, they commit to their new values only in the next time step. */	
CHIP	CPU	

IN		
			instruction[16],	//	Instruction	to	execute.	
			inM[16],									//	Value	of	Mem[A],	the	instruction’s	M	input	
			reset;											//	Signals	whether	to	continue	executing	the	current	program	
																				//	(reset==1)	or	restart	the	current	program	(reset==0).	

OUT	
			outM[16],						//	Value	to	write	to	Mem[addressM],	the	instruction’s	M	output	
			addressM[15],		//	In	which	address	to	write?	
			writeM,								//	Write	to	the	Memory?	

				pc[15];								//	address	of	next	instruction	

	
Diagram 5.2: The Hack Central Processing Unit (CPU) interface 
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writing and reading, respectively, 16-bit values in a designated memory segment called screen 

memory map. Similarly, which key is presently pressed on the keyboard can be determined by 

probing a designated memory register called keyboard memory map. 

The memory maps interact with their respective I/O devices via peripheral logic that 

resides outside the computer. The contract is as follows: When a bit is changed in the screen’s 

memory map, a respective black and white pixel is drawn on the physical screen. When a key is 

pressed on the physical keyboard, the respective scan-code of this key appears in the keyboard’s 

memory map.  

 
 

/** The instruction memory of the Hack computer, implemented as a 
read-only memory of 32K registers, each 16-bit wide. 
Performs the operation out = ROM32K[address]. 
In words: outputs the 16-bit value stored in the register selected by the 
address input. This value is taken to be the current instruction. 
It is assumed that the chip is preloaded with a program written in the 
Hack machine language. 
Software-based simulators of the Hack computer are expected to 
provide means for loading the chip with a Hack program, either 
interactively, or using a test script. */ 
CHIP	ROM32K	

IN		address[15];	

OUT	out[16];	

 
Diagram 5.3:  The Hack Instruction Memory interface. 
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We now turn to specifying the built-in chips that interface between the hardware platform and 

the I/O devices. This will set the stage for specifying the complete memory module that embeds 

these chips. 

Screen: The Hack computer can interact with a physical screen consisting of 256 rows of 512 

black-and-white pixels each. The computer interfaces with the physical screen via a memory 

map, implemented by a RAM chip called Screen. This chip behaves like regular memory, 

meaning that it can be read and written to. In addition, it features the side effect that any bit 

written to it is reflected as a pixel on the physical screen (1 = black, 0 = white). The exact 

mapping between the memory map and the physical screen is specified in diagram 5.4. 

/** The Screen (memory map) functions exactly like a 16-bit, 8K RAM: 

             (1) out(t) = Screen[address(t)](t) 
             (2) if load(t) then Screen[address(t)](t+1) = in(t) 

The chip implementation has the side effect of continuously refreshing a physical 
screen. The physical screen consists of 256 rows and 512 columns of black and white 
pixels (simulators of the Hack computer are expected to simulate this screen). 

Each row in the physical screen, starting at the top left corner, is represented in the 
Screen memory map by 32 consecutive 16-bit words. Thus the pixel at row r from the 
top and column c from the left (0 ≤ r ≤ 255, 0 ≤ c ≤ 511) is mapped on the c%16 bit 
(counting from LSB to MSB) of the 16-bit word stored in Screen[r * 32 + c / 16].  */ 

CHIP	Screen	

IN	
				in[16],						//	what	to	write	
				address[13];	//	where	to	write	(or	read)	
				load,								//	write-enable	bit	

OUT	
				out[16];					//	Screen	value	at	the	given	address	

 
Diagram 5.4: The Hack Screen chip interface 
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Keyboard: The Hack computer can interact with a physical keyboard, like that of a personal 

computer. The computer interfaces with the physical keyboard via a chip called Keyboard. 

When a key is pressed on the physical keyboard, a unique 16-bit scan-code is emitted to the 

output of the Keyboard chip. When no key is pressed, the chip outputs 0. The character set of 

the Hack platform is given in Appendix C, along with the scan-code of each character. 

 
 

/** The Keyboard (memory map) is connected to a standard, physical 
keyboard. It is made to output the 16-bit scan-code associated with the 
key which is presently pressed on the physical keyboard, or 0 if no key is 
pressed. 
The keyboard scan-codes are given in Appendix C of the book. 
Simulators of the Hack computer are expected to implement the contract 
described above. */ 
CHIP	Keyboard	

OUT	out[16];			//	The	scan-code	of	the	pressed	key,	
															//	or	0	if	no	key	is	currently	pressed.	

 
Diagram 5.5: The Hack Keyboard chip interface 

 

5.2.6 Data Memory 

The overall address space known as the Hack data memory is realized by a chip called Memory. 

This chip is essentially a package of three 16-bit storage devices: a RAM (16K registers, for 

regular data storage), a Screen (8K registers, acting as the screen memory map), and a 

Keyboard (1 register, acting as the keyboard memory map). The complete specification is given 

in diagram 5.6. 
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/** The complete address space of the Hack computer's data memory, including RAM and memory-
mapped I/O. Facilitates read and write operations, as follows: 

       Read:    out(t) = Mem[address(t)](t) 

       Write:   if load(t) then Mem[address(t)](t+1) = in(t) 

In words: the chip always outputs the value stored at the memory location specified by address. 

If load==1, the in value is loaded into the register specified by address. This value becomes available 
through the out output from the next time step onward. 
The memory access rules are as follows: 
Only the top 16K+8K+1 words of the address space are used. 
0x0000-0x5FFF: accessing an address in this range results in accessing the RAM. 
0x4000-0x5FFF: accessing an address in this range results in accessing the Screen. 
							0x6000: accessing this address results in accessing the Keyboard. 
						> 0x6000: accessing an address in this range is invalid. */ 

CHIP	Memory	

IN			in[16],	load,	address[15];	

	OUT		out[16];	

	

Diagram 5.6: The Hack Data Memory interface 
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5.2.7 Computer 

The topmost chip in the Hack hardware hierarchy is a Computer chip consisting of a CPU, an 

instruction memory, and a data memory. The computer can interact with a screen and a 

keyboard. The complete specification is given in diagram 5.7. 

 

 
 

/** The HACK computer, consisting of CPU, ROM and Memory parts 
(these	internal	chip-parts	are	not	shown	in	the	diagram). 
When reset==0, the program stored in the computer's ROM executes. 
When reset==1, the execution of the program restarts. 
Thus, to start a program's execution, the reset input must be pushed "up" 
(signaling 1) and "down" (signaling 0). 
From this point onward, the user is at the mercy of the software. In 
particular, depending on the program's code, the screen may show some 
output, and the user may be able to interact with the computer via the 
keyboard. */ 

CHIP	Computer	

IN			reset;	

	

Diagram 5.7: Interface of the topmost chip in the 
 Hack hardware platform, named Computer. 

 
 



 19 

5.3 Implementation 

This section outlines how a hardware platform can be built to realize the Hack computer 

specification described in the previous section. As usual, we don’t give exact building 

instructions. Rather, we expect readers to discover and complete the implementation details on 

their own. All the chips described below can be built in HDL and simulated on a personal 

computer, using the hardware simulator supplied with the book. As usual, technical details are 

given in the final Project section of this chapter. 

5.3.1 The Central Processing Unit 

When we set out to implement the Hack CPU, our objective is to come up with a logic gate 

architecture capable of (i) executing a given Hack instruction, and (ii) determining which 

instruction should be fetched and executed next. In order to do so, the proposed CPU 

implementation includes an ALU chip capable of computing arithmetic/logical functions, a set of 

registers, a program counter, and some additional gates designed to help decode, execute, and 

fetch instructions. Since all these building blocks were already built in previous chapters, the 

key question that we face now is how to arrange and connect them in a way that effects the 

desired CPU operation. One possible configuration is illustrated in diagram 5.8. 

The architecture shown in diagram 5.8 is used to perform three classical CPU tasks: decoding 

the current instruction, executing the current instruction, and deciding which instruction to fetch 

and execute next. We now turn to describe these three tasks. 
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Diagram 5.8: Proposed CPU implementation, showing an “incoming” 16-bit instruction 
denoted cccccccccccccccc. The instruction bits are labeled c, since in the case of a C-
instruction, the CPU logic treats them as control bits that are extracted from the 
instruction and routed to different chip-parts of the CPU. In particular, in this diagram, 
every c symbol entering a chip-part stands for some control bit, extracted from the 
instruction (in the case of the ALU, the “c’s” input stands for the 6 control bits that 
instruct the ALU what to compute, and the “c’s” output stands for its zr and ng outputs). 
Taken together, the distributed behaviors that these control bits effect throughout the 
CPU architecture end up executing the instruction.  
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Instruction decoding 

The 16-bit value of the CPU’s instruction input represents either an A-instruction or a C-

instruction. In order to figure out the semantics of this instruction, we can parse, or unpack it, 

into the following fields: “ixxaccccccdddjjj”. The i-bit (also known as opcode) codes the 

instruction type, which is either 0 for an A-instruction or 1 for a C-instruction. In case of an A-

instruction, the entire instruction represent the 16-bit value of the constant that should be loaded 

into the A register. In case of a C-instruction, the a- and c-bits code the comp part of the 

instruction, while the d- and j-bits code the dest and jump parts of the instruction, respectively 

(the x-bits are not used, and can be ignored).  

Instruction Execution 

The decoded fields of the instruction (i-, a-, c-, d-, and j-bits) are routed simultaneously to 

various parts of the CPU architecture, where they cause different chip-parts to do what they are 

supposed to do in order to execute either the A- or the C-instruction, as mandated by the Hack 

machine language specification. In the case of a C-instruction, the single a-bit determines 

whether the ALU will operate on the A register input or on the M input, and the six c-bits 

determine which function the ALU will compute. The three d-bits are used to determine which 

registers should “accept” the ALU resulting output, and the three j-bits are used to for branching 

control, as we now turn to describe.	

Instruction Fetching 

As a side effect of executing the current instruction, the CPU must determine, and emit, the 

address of the instruction that should be fetched and executed next. The key element in this sub-

task is the Program Counter—a CPU chip-part whose role is to always store the address of the 

next instruction. Later in the chapter we’ll describe how we connect the pc output of the CPU 

into the address input of the instruction memory; this connection causes the instruction 
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memory to always emit the instruction that ought to be fetched and executed next. This output 

is connected to the instruction input of the CPU, closing the fetch-execute cycle. 

 According to the Hack computer specification, the current program is stored in the 

instruction memory, starting at address 0. Hence, if we wish to start (or restart) a program’s 

execution, we should reset the Program Counter to 0. That’s why in diagram 5.8 the reset 

input of the CPU is fed directly into the reset input of the PC chip. If we’ll assert this bit, we’ll 

effect PC=0, causing the computer to fetch and execute the first instruction in the program. What 

should we do next? Normally, we’d like to execute the next instruction in the program. 

Therefore, the default operation of the Program Counter is PC++. 

But what if the instruction dictates to effect a “jump n” operation, where n is the address 

of an instruction located anywhere in the program? According to the Hack language 

specification, a “jump n” operation is realized using a sequence of two instructions. First, we 

issue the A-instruction @n, which sets the A register to n; next, we issue a C-instruction that 

includes a jump directive. According to the language specification, execution always branches 

to the instruction that the A register points at. Thus, when implementing the CPU, one of our 

challenges is to come up with a logic gate architecture that realizes the following behavior: if 

jump then PC = A else PC++. The value of the Boolean expression jump depends on the 

instruction’s j-bits and on the ALU output. 

How to implement this logic? The answer is hinted by diagram 5.8. Note that the output 

of the A register feeds into the input of the PC register. Recall that the latter chip has a load-bit 

that enables it to accept a new input value. Thus, if we’ll assert this load-bit, we’ll cause the 

architecture to effect the operation PC=A rather than the default operation PC++. We should do 

this only if we have to realize a jump. Now, the question of weather or not a jump should be 

realized is answered by two signals: (i) the j-bits of the current instruction, specifying the jump 
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condition, and (ii) the ALU output-bits zr and ng, which can be used to determine if the specified 

condition is satisfied, or not. 

We’ll stop here, lest we rob readers the pleasure of discovering the missing details and 

completing the CPU implementation on their own. 

5.3.2 Memory 

The Hack Memory chip is essentially an amalgamation of three lower-level chips: RAM16K, 

Screen, and Keyboard. Yet this modularity is strictly implicit: users of the Memory chip, like 

Hack programmers or programmers who write compilers that generate Hack code, see a single 

address space, spanning from address 0 to address 24576 (0×0000 to 0×6000 in hexa). 

The implementation of the Memory chip (as shown in diagram 5.6) should realize this 

continuum effect. For example, if the address input of the Memory chip happens to be 16384, 

the chip logic should end up accessing address 0 in the Screen chip, and so on. This can be 

done using similar techniques to those used in chapter 3 to integrate small RAM units into 

larger ones. 

5.3.3 Computer 

We have reached the end of our hardware journey. The topmost Computer chip can be realized 

using three previously built chip-parts: a CPU, a data Memory, and an instruction memory named 

ROM32K. Diagram 5.9 gives the details. 
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Diagram 5.9: Proposed implementation of the platform’s topmost chip, Computer.  
 
 

 
5.4 Project 

Objective: Build the Hack computer platform, culminating in the topmost Computer chip. 

Resources: The only resources that you need for completing this project are the hardware 

simulator supplied with the book and the test materials described here. The computer platform 

should be written in HDL and tested using the hardware simulator. 

Contract: Build a hardware platform capable of executing programs written in the Hack 

machine language specified in chapter 4. Demonstrate the platform’s operations by having your 

Computer chip run the three programs described below. 

Test Programs: A natural way to test the overall Computer chip implementation is to have it 

execute some sample programs written in the Hack machine language. In order to run such a 
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test, one can write a test script that loads the Computer chip into the hardware simulator, loads a 

program from an external text file into its ROM chip, and then runs the clock enough cycles to 

execute the program. We supply the following test programs (as well as all the relevant test 

scripts and compare files):  

• Add.hack: Adds the two constants 2 and 3 and writes the result in RAM[0]. 

• Max.hack: Computes the maximum of RAM[0] and RAM[1] and writes the result in RAM[2]. 

• Rect.hack: Draws on the screen a rectangle of RAM[0] rows of 16 pixels each. 

Before testing your Computer chip on any one of the above programs, read the test script 

associated with the program and be sure to understand the instructions given to the simulator. If 

needed, consult Appendix B. 

Steps: Implement the hardware platform in the following order: 

Memory: Composed from three chips: RAM16K, Screen, and Keyboard. The Screen and the 

Keyboard are available as built-in chips and there is no need to build them. Although the 

RAM16K chip was built in project 3, we recommend using its built-in version, as it provides a 

debugging-friendly GUI. 

CPU: The central processing unit can be built according to the proposed implementation given 

in figure 5.8, using the ALU and Register chips built in chapters 2 and 3, respectively. We 

recommend using the built-in versions of these chips, in particular ARegister and DRegister. 

These chips have exactly the same functionality of the Register chip specified in chapter 3, 

plus GUI side effects. 

 In the course of implementing the CPU, you may be tempted to specify and build some 

internal chips of your own. Be advised that there is no need to do so; The Hack CPU can be 

implemented elegantly and efficiently using only the chip-parts that appear in diagram 5.8, plus 

some elementary logic gates built in project 1. 
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Instruction Memory: Use the built-in ROM32K chip. 

Computer: Build the topmost Computer chip using the three chip-parts shown in diagram 5.9. 

The Hardware Simulator: All the chips in this project (including the topmost Computer chip) 

can be implemented and tested using the supplied hardware simulator. Figure 5.10 is a screen 

shot of testing the Rect.hack program on a Computer chip implementation. 

 

 
 

Diagram 5.10: Testing the Computer chip on the supplied hardware simulator. The 
Rect program draws a rectangle of RAM[0] rows of 16 pixels each, all black, at the top-
left of the screen. Note that the program is error-free. Therefore, if it does not operate as 
expected, it means that the hardware platform on which it is running (Computer.hdl 
and/or, possibly, some of it’s chip-parts) is buggy. 
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5.5 Perspective 

Following the general spirit of the book, the architecture of the Hack computer is rather 

minimal. Typical computer platforms have more registers, more data types, more powerful 

ALUs, and richer instruction sets. However, these differences are mainly quantitative. From a 

qualitative standpoint, Hack is quite similar to most digital computers, as they all follow the 

same conceptual paradigm: the von Neumann architecture. 

 In terms of function, computer systems can be classified into two categories: general-

purpose computers, designed to easily switch from executing one program to another, and 

dedicated computers, usually embedded in other systems like cell phones, game consoles, 

digital cameras, weapon systems, factory equipment, and so on. For any particular application, a 

single program is burned into the dedicated computer’s ROM, and is the only one that can be 

executed (in game consoles, for example, the game software resides in an external cartridge that 

is simply a replaceable ROM module encased in some fancy package). Aside from this 

difference, general-purpose and dedicated computers share the same architectural ideas: stored 

programs, fetch-decode-execute logic, CPU, registers, program counter, and so on. 

 Unlike Hack, most general-purpose computers use a single address space for storing 

both data and instructions. In such architectures, the instruction address as well as the optional 

data address specified by the instruction must be fed into the same destination: the single 

address input of the shared address space. Clearly, this cannot be done at the same time. The 

standard solution is to base the computer implementation on a two-cycle logic. During the fetch 

cycle, the instruction address is fed to the address input of the memory, causing it to 

immediately emit the current instruction, which is then stored in an instruction register. In the 

subsequent execute cycle, the instruction is decoded, and the optional data address inferred from 

it is fed to the memory’s address input, allowing the instruction to manipulate the selected 

memory location. In contrast, the Hack architecture is unique in that it partitions the address 
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space into two separate parts, allowing a single-cycle fetch-execute logic. The price of this 

simpler hardware design is that programs cannot be changed dynamically. 

 In terms of I/O, the Hack keyboard and screen are rather spartan. General-purpose 

computers are typically connected to multiple I/O devices like printers, disks, network 

connections, and so on. Also, typical screens are obviously much more powerful than the Hack 

screen, featuring more pixels, many brightness levels in each pixel, and colors. Still, the basic 

principle that each pixel is controlled by a memory-resident binary value is maintained: instead 

of a single bit controlling the pixel’s black or white color, several bits are devoted to control the 

level of brightness of each of the three primary colors that, together, produce the pixel’s 

ultimate color. Likewise, the memory mapping of the Hack screen is simplistic. Instead of 

mapping pixels directly into bits of memory, most modern computers allow the CPU to send 

high-level graphic instructions to a graphics card that controls the screen. This way, the CPU is 

relieved from the tedium of drawing figures like circles and polygons directly—the graphics 

card takes care of this task using its own embedded chip-set. 

 Finally, it should be stressed that most of the effort and creativity in designing computer 

hardware is invested in achieving better performance. Thus, hardware architecture courses and 

textbooks typically evolve around such issues as implementing memory hierarchies (cache), 

better access to I/O devices, pipelining, parallelism, instruction prefetching, and other 

optimization techniques that were sidestepped in this chapter. 

 Historically, attempts to enhance the processor’s performance have led to two main 

schools of hardware design. Advocates of the Complex Instruction Set Computing (CISC) 

approach argue for achieving better performance by providing rich and elaborate instruction 

sets. Conversely, the Reduced Instruction Set Computing (RISC) camp uses simpler instruction 

sets in order to promote as fast a hardware implementation as possible. The Hack computer 
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does not enter this debate, featuring neither a strong instruction set nor special hardware 

acceleration techniques. 

 



6 Assembler

What’s in a name? That which we call a rose by any other name would smell as sweet.

—Shakespeare, from Romeo and Juliet

The first half of the book (chapters 1–5) described and built a computer’s hardware

platform. The second half of the book (chapters 6–12) focuses on the computer’s

software hierarchy, culminating in the development of a compiler and a basic oper-

ating system for a simple, object-based programming language. The first and most

basic module in this software hierarchy is the assembler. In particular, chapter 4

presented machine languages in both their assembly and binary representations. This

chapter describes how assemblers can systematically translate programs written in

the former into programs written in the latter. As the chapter unfolds, we explain

how to develop a Hack assembler—a program that generates binary code that can

run as is on the hardware platform built in chapter 5.

Since the relationship between symbolic assembly commands and their corre-

sponding binary codes is straightforward, writing an assembler (using some high-

level language) is not a difficult task. One complication arises from allowing

assembly programs to use symbolic references to memory addresses. The assembler is

expected to manage these user-defined symbols and resolve them to physical memory

addresses. This task is normally done using a symbol table—a classical data structure

that comes to play in many software translation projects.

As usual, the Hack assembler is not an end in itself. Rather, it provides a simple

and concise demonstration of the key software engineering principles used in the

construction of any assembler. Further, writing the assembler is the first in the series

of seven software development projects that accompany the rest of the book. Unlike

the hardware projects, which were implemented in HDL, the software projects that

construct the translator programs (assembler, virtual machine, and compiler) may be

implemented in any programming language. In each project, we provide a language-

neutral API and a detailed step-by-step test plan, along with all the necessary test



programs and test scripts. Each one of these projects, beginning with the assembler,

is a stand-alone module that can be developed and tested in isolation from all the

other projects.

6.1 Background

Machine languages are typically specified in two flavors: symbolic and binary. The

binary codes—for example, 110000101000000110000000000000111—represent

actual machine instructions, as understood by the underlying hardware. For exam-

ple, the instruction’s leftmost 8 bits can represent an operation code, say LOAD, the

next 8 bits a register, say R3, and the remaining 16 bits an address, say 7. Depending

on the hardware’s logic design and the agreed-upon machine language, the overall

32-bit pattern can thus cause the hardware to effect the operation ‘‘load the contents

of Memory[7] into register R3.’’ Modern computer platforms support dozens if

not hundreds of such elementary operations. Thus, machine languages can be rather

complex, involving many operation codes, different memory addressing modes, and

various instruction formats.

One way to cope with this complexity is to document machine instructions

using an agreed-upon syntax, say LOAD R3,7 rather than 110000101000000110

000000000000111. And since the translation from symbolic notation to binary code

is straightforward, it makes sense to allow low-level programs to be written in sym-

bolic notation and to have a computer program translate them into binary code. The

symbolic language is called assembly, and the translator program assembler. The

assembler parses each assembly command into its underlying fields, translates each

field into its equivalent binary code, and assembles the generated codes into a binary

instruction that can be actually executed by the hardware.

Symbols Binary instructions are represented in binary code. By definition, they

refer to memory addresses using actual numbers. For example, consider a program

that uses a variable to represent the weight of various things, and suppose that this

variable has been mapped on location 7 in the computer’s memory. At the binary

code level, instructions that manipulate the weight variable must refer to it using the

explicit address 7. Yet once we step up to the assembly level, we can allow writing

commands like LOAD R3,weight instead of LOAD R3,7. In both cases, the command

will effect the same operation: ‘‘set R3 to the contents of Memory[7].’’ In a similar

fashion, rather than using commands like goto 250, assembly languages allow com-

mands like goto loop, assuming that somewhere in the program the symbol loop is
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made to refer to address 250. In general then, symbols are introduced into assembly

programs from two sources:

m Variables: The programmer can use symbolic variable names, and the trans-

lator will ‘‘automatically’’ assign them to memory addresses. Note that the actual

values of these addresses are insignificant, so long as each symbol is resolved to the

same address throughout the program’s translation.

m Labels: The programmer can mark various locations in the program with sym-

bols. For example, one can declare the label loop to refer to the beginning of a cer-

tain code segment. Other commands in the program can then goto loop, either

conditionally or unconditionally.

The introduction of symbols into assembly languages suggests that assemblers

must be more sophisticated than dumb text processing programs. Granted, trans-

lating agreed-upon symbols into agreed-upon binary codes is not a complicated task.

At the same time, the mapping of user-defined variable names and symbolic labels

on actual memory addresses is not trivial. In fact, this symbol resolution task is the

first nontrivial translation challenge in our ascent up the software hierarchy from the

hardware level. The following example illustrates the challenge and the common way

to address it.

Symbol Resolution Consider figure 6.1, showing a program written in some self-

explanatory low-level language. The program contains four user-defined symbols:

two variable names (i and sum) and two labels (loop and end). How can we sys-

tematically convert this program into a symbol-less code?

We start by making two arbitrary game rules: The translated code will be stored

in the computer’s memory starting at address 0, and variables will be allocated to

memory locations starting at address 1024 (these rules depend on the specific target

hardware platform). Next, we build a symbol table, as follows. For each new symbol

xxx encountered in the source code, we add a line ðxxx , nÞ to the symbol table,

where n is the memory address associated with the symbol according to the game

rules. After completing the construction of the symbol table, we use it to translate the

program into its symbol-less version.

Note that according to the assumed game rules, variables i and sum are allo-

cated to addresses 1024 and 1025, respectively. Of course any other two addresses

will be just as good, so long as all references to i and sum in the program resolve

to the same physical addresses, as indeed is the case. The remaining code is self-

explanatory, except perhaps for instruction 6. This instruction terminates the pro-

gram’s execution by putting the computer in an infinite loop.
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Three comments are in order here. First, note that the variable allocation as-

sumption implies that the largest program that we can run is 1,024 instructions

long. Since realistic programs (like the operating system) are obviously much larger,

the base address for storing variables will normally be much farther. Second, the as-

sumption that each source command is mapped on one word may be naı̈ve. Typi-

cally, some assembly commands (e.g., if i=101 goto end) may translate into several

machine instructions and thus will end up occupying several memory locations.

The translator can deal with this variance by keeping track of how many words

each source command generates, then updating its ‘‘instruction memory counter’’

accordingly.

Finally, the assumption that each variable is represented by a single memory lo-

cation is also naı̈ve. Programming languages feature variables of different types, and

these occupy different memory spaces on the target computer. For example, the C

language data types short and double represent 16-bit and 64-bit numbers, respec-

tively. When a C program is run on a 16-bit machine, these variables will occupy a

single memory address and a block of four consecutive addresses, respectively. Thus,

when allocating memory space for variables, the translator must take into account

both their data types and the word width of the target hardware.

The Assembler Before an assembly program can be executed on a computer, it must

be translated into the computer’s binary machine language. The translation task is

Code with symbols Symbol table Code with symbols resolved

00

01

02

03

04

05

06

// Computes sum=1+...+100

i=1

sum=0

loop:

if i=101 goto end

sum=sum+i

i=i+1

goto loop

end:

goto end

i 1024

sum 1025

loop 2

end 6

00

01

02

03

04

05

06

M[1024]=1 // (M=memory)

M[1025]=0

if M[1024]=101 goto 6

M[1025]=M[1025]+M[1024]

M[1024]=M[1024]+1

goto 2

goto 6

(assuming that

variables are

allocated to

Memory[1024]

onward)
(assuming that each symbolic

command is translated into one

word in memory)

Figure 6.1 Symbol resolution using a symbol table. The line numbers are not part of the
program—they simply count all the lines in the program that represent real instructions,
namely, neither comments nor label declarations. Note that once we have the symbol table in
place, the symbol resolution task is straightforward.
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done by a program called the assembler. The assembler takes as input a stream of

assembly commands and generates as output a stream of equivalent binary instruc-

tions. The resulting code can be loaded as is into the computer’s memory and exe-

cuted by the hardware.

We see that the assembler is essentially a text-processing program, designed to

provide translation services. The programmer who is commissioned to write the

assembler must be given the full documentation of the assembly syntax, on the

one hand, and the respective binary codes, on the other. Following this contract—

typically called machine language specification—it is not difficult to write a program

that, for each symbolic command, carries out the following tasks (not necessarily in

that order):

m Parse the symbolic command into its underlying fields.

m For each field, generate the corresponding bits in the machine language.

m Replace all symbolic references (if any) with numeric addresses of memory

locations.

m Assemble the binary codes into a complete machine instruction.

Three of the above tasks (parsing, code generation, and final assembly) are rather

easy to implement. The fourth task—symbols handling—is more challenging, and

considered one of the main functions of the assembler. This function was described in

the previous section. The next two sections specify the Hack assembly language and

propose an assembler implementation for it, respectively.

6.2 Hack Assembly-to-Binary Translation Specification

The Hack assembly language and its equivalent binary representation were specified

in chapter 4. A compact and formal version of this language specification is repeated

here, for ease of reference. This specification can be viewed as the contract that Hack

assemblers must implement, one way or another.

6.2.1 Syntax Conventions and File Formats

File Names By convention, programs in binary machine code and in assembly

code are stored in text files with ‘‘hack’’ and ‘‘asm’’ extensions, respectively. Thus, a

Prog.asm file is translated by the assembler into a Prog.hack file.
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Binary Code (.hack) Files A binary code file is composed of text lines. Each line is

a sequence of 16 ‘‘0’’ and ‘‘1’’ ASCII characters, coding a single 16-bit machine lan-

guage instruction. Taken together, all the lines in the file represent a machine lan-

guage program. When a machine language program is loaded into the computer’s

instruction memory, the binary code represented by the file’s nth line is stored in ad-

dress n of the instruction memory (the count of both program lines and memory

addresses starts at 0).

Assembly Language (.asm) Files An assembly language file is composed of text

lines, each representing either an instruction or a symbol declaration:

m Instruction: an A-instruction or a C-instruction, described in section 6.2.2.

m (Symbol): This pseudo-command binds the Symbol to the memory location

into which the next command in the program will be stored. It is called ‘‘pseudo-

command’’ since it generates no machine code.

(The remaining conventions in this section pertain to assembly programs only.)

Constants and Symbols Constants must be non-negative and are written in decimal

notation. A user-defined symbol can be any sequence of letters, digits, underscore (_),

dot (.), dollar sign ($), and colon (:) that does not begin with a digit.

Comments Text beginning with two slashes (//) and ending at the end of the line is

considered a comment and is ignored.

White Space Space characters are ignored. Empty lines are ignored.

Case Conventions All the assembly mnemonics must be written in uppercase. The

rest (user-defined labels and variable names) is case sensitive. The convention is to

use uppercase for labels and lowercase for variable names.

6.2.2 Instructions

The Hack machine language consists of two instruction types called addressing in-

struction (A-instruction) and compute instruction (C-instruction). The instruction

format is as follows.
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A-instruction: @value // Where value is either a non-negative decimal number

// or a symbol referring to such number.

value (v ¼ 0 or 1)

Binary: 0 v v v v v v v v v v v v v v v

C-instruction: dest¼comp;jump // Either the dest or jump fields may be empty.

// If dest is empty, the ‘‘¼’’ is omitted;

// If jump is empty, the ‘‘;’’ is omitted.

comp dest jump

Binary: 1 1 1 a c1 c2 c3 c4 c5 c6 d1 d2 d3 j1 j2 j3

The translation of each of the three fields comp, dest, jump to their binary forms is

specified in the following three tables.

comp

(when a¼0)
c1 c2 c3 c4 c5 c6

comp

(when a¼1)

0 1 0 1 0 1 0

1 1 1 1 1 1 1

-1 1 1 1 0 1 0

D 0 0 1 1 0 0

A 1 1 0 0 0 0 M

!D 0 0 1 1 0 1

!A 1 1 0 0 0 1 !M

-D 0 0 1 1 1 1

-A 1 1 0 0 1 1 -M

D+1 0 1 1 1 1 1

A+1 1 1 0 1 1 1 M+1

D-1 0 0 1 1 1 0

A-1 1 1 0 0 1 0 M-1

D+A 0 0 0 0 1 0 D+M

D-A 0 1 0 0 1 1 D-M

A-D 0 0 0 1 1 1 M-D

D&A 0 0 0 0 0 0 D&M

D|A 0 1 0 1 0 1 D|M
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dest d1 d2 d3 jump j1 j2 j3

null 0 0 0 null 0 0 0

M 0 0 1 JGT 0 0 1

D 0 1 0 JEQ 0 1 0

MD 0 1 1 JGE 0 1 1

A 1 0 0 JLT 1 0 0

AM 1 0 1 JNE 1 0 1

AD 1 1 0 JLE 1 1 0

AMD 1 1 1 JMP 1 1 1

6.2.3 Symbols

Hack assembly commands can refer to memory locations (addresses) using

either constants or symbols. Symbols in assembly programs arise from three

sources.

Predefined Symbols Any Hack assembly program is allowed to use the following

predefined symbols.

Label RAM address (hexa)

SP 0 0x0000

LCL 1 0x0001

ARG 2 0x0002

THIS 3 0x0003

THAT 4 0x0004

R0-R15 0-15 0x0000-f

SCREEN 16384 0x4000

KBD 24576 0x6000

Note that each one of the top five RAM locations can be referred to using two

predefined symbols. For example, either R2 or ARG can be used to refer to

RAM[2].

Label Symbols The pseudo-command (Xxx) defines the symbol Xxx to refer to the

instruction memory location holding the next command in the program. A label can

be defined only once and can be used anywhere in the assembly program, even before

the line in which it is defined.
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Variable Symbols Any symbol Xxx appearing in an assembly program that is

not predefined and is not defined elsewhere using the (Xxx) command is treated as

a variable. Variables are mapped to consecutive memory locations as they are first

encountered, starting at RAM address 16 (0x0010).

6.2.4 Example

Chapter 4 presented a program that sums up the integers 1 to 100. Figure 6.2 repeats

this example, showing both its assembly and binary versions.

Assembly code (Prog.asm) Binary code (Prog.hack)

// Adds 1 + ... + 100

@i

M=1 // i=1

@sum

M=0 // sum=0

(LOOP)

@i

D=M // D=i

@100

D=D-A // D=i-100

@END

D;JGT // if (i-100)>0 goto END

@i

D=M // D=i

@sum

M=D+M // sum=sum+i

@i

M=M+1 // i=i+1

@LOOP

0;JMP // goto LOOP

(END)

@END

0;JMP // infinite loop

Assembler

(this line should be erased)

0000 0000 0001 0000

1110 1111 1100 1000

0000 0000 0001 0001

1110 1010 1000 1000

(this line should be erased)

0000 0000 0001 0000

1111 1100 0001 0000

0000 0000 0110 0100

1110 0100 1101 0000

0000 0000 0001 0010

1110 0011 0000 0001

0000 0000 0001 0000

1111 1100 0001 0000

0000 0000 0001 0001

1111 0000 1000 1000

0000 0000 0001 0000

1111 1101 1100 1000

0000 0000 0000 0100

1110 1010 1000 0111

(this line should be erased)

0000 0000 0001 0010

1110 1010 1000 0111

Figure 6.2 Assembly and binary representations of the same program.
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6.3 Implementation

The Hack assembler reads as input a text file named Prog.asm, containing a Hack

assembly program, and produces as output a text file named Prog.hack, contain-

ing the translated Hack machine code. The name of the input file is supplied to the

assembler as a command line argument:

prompt> Assembler Prog.asm

The translation of each individual assembly command to its equivalent binary in-

struction is direct and one-to-one. Each command is translated separately. In partic-

ular, each mnemonic component (field) of the assembly command is translated into

its corresponding bit code according to the tables in section 6.2.2, and each symbol in

the command is resolved to its numeric address as specified in section 6.2.3.

We propose an assembler implementation based on four modules: a Parser module

that parses the input, a Code module that provides the binary codes of all the as-

sembly mnemonics, a SymbolTable module that handles symbols, and a main pro-

gram that drives the entire translation process.

A Note about API Notation The assembler development is the first in a series of

five software construction projects that build our hierarchy of translators (assembler,

virtual machine, and compiler). Since readers can develop these projects in the pro-

gramming language of their choice, we base our proposed implementation guidelines

on language independent APIs. A typical project API describes several modules, each

containing one or more routines. In object-oriented languages like Java, Cþþ, and

C#, a module usually corresponds to a class, and a routine usually corresponds to

a method. In procedural languages, routines correspond to functions, subroutines,

or procedures, and modules correspond to collections of routines that handle related

data. In some languages (e.g., Modula-2) a module may be expressed explicitly, in

others implicitly (e.g., a file in the C language), and in others (e.g., Pascal) it will

have no corresponding language construct, and will just be a conceptual grouping of

routines.

6.3.1 The Parser Module

The main function of the parser is to break each assembly command into its under-

lying components (fields and symbols). The API is as follows.
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Parser: Encapsulates access to the input code. Reads an assembly language com-

mand, parses it, and provides convenient access to the command’s components

(fields and symbols). In addition, removes all white space and comments.

Routine Arguments Returns Function

Constructor/

initializer

Input file/

stream

— Opens the input file/stream and

gets ready to parse it.

hasMoreCommands — Boolean Are there more commands in the

input?

advance — — Reads the next command from

the input and makes it the current

command. Should be called only

if hasMoreCommands() is true.

Initially there is no current command.

commandType — A_COMMAND,

C_COMMAND,

L_COMMAND

Returns the type of the current

command:
m A_COMMAND for @Xxx where

Xxx is either a symbol or a

decimal number
m C_COMMAND for

dest=comp;jump
m L_COMMAND (actually, pseudo-

command) for (Xxx) where Xxx

is a symbol.

symbol — string Returns the symbol or decimal

Xxx of the current command

@Xxx or (Xxx). Should be called

only when commandType() is

A_COMMAND or L_COMMAND.

dest — string Returns the dest mnemonic in

the current C-command (8 possi-

bilities). Should be called only

when commandType() is C_COMMAND.
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Routine Arguments Returns Function

comp — string Returns the comp mnemonic in

the current C-command (28 pos-

sibilities). Should be called only

when commandType() is

C_COMMAND.

jump — string Returns the jump mnemonic in

the current C-command (8 pos-

sibilities). Should be called only

when commandType() is

C_COMMAND.

6.3.2 The Code Module

Code: Translates Hack assembly language mnemonics into binary codes.

Routine Arguments Returns Function

dest mnemonic (string) 3 bits Returns the binary code of the

dest mnemonic.

comp mnemonic (string) 7 bits Returns the binary code of the

comp mnemonic.

jump mnemonic (string) 3 bits Returns the binary code of the

jump mnemonic.

6.3.3 Assembler for Programs with No Symbols

We suggest building the assembler in two stages. In the first stage, write an assembler

that translates assembly programs without symbols. This can be done using the

Parser and Code modules just described. In the second stage, extend the assembler

with symbol handling capabilities, as we explain in the next section.

The contract for the first symbol-less stage is that the input Prog.asm program

contains no symbols. This means that (a) in all address commands of type @Xxx the

Xxx constants are decimal numbers and not symbols, and (b) the input file contains

no label commands, namely, no commands of type (Xxx).
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The overall symbol-less assembler program can now be implemented as follows.

First, the program opens an output file named Prog.hack. Next, the program

marches through the lines (assembly instructions) in the supplied Prog.asm file.

For each C-instruction, the program concatenates the translated binary codes of the

instruction fields into a single 16-bit word. Next, the program writes this word into

the Prog.hack file. For each A-instruction of type @Xxx, the program translates the

decimal constant returned by the parser into its binary representation and writes the

resulting 16-bit word into the Prog.hack file.

6.3.4 The SymbolTable Module

Since Hack instructions can contain symbols, the symbols must be resolved into

actual addresses as part of the translation process. The assembler deals with this task

using a symbol table, designed to create and maintain the correspondence between

symbols and their meaning (in Hack’s case, RAM and ROM addresses). A natural

data structure for representing such a relationship is the classical hash table. In most

programming languages, such a data structure is available as part of a standard

library, and thus there is no need to develop it from scratch. We propose the follow-

ing API.

SymbolTable: Keeps a correspondence between symbolic labels and numeric

addresses.

Routine Arguments Returns Function

Constructor — — Creates a new empty symbol

table.

addEntry symbol (string),

address (int)

— Adds the pair (symbol,

address) to the table.

contains symbol (string) Boolean Does the symbol table contain

the given symbol?

GetAddress symbol (string) int Returns the address associated

with the symbol.

6.3.5 Assembler for Programs with Symbols

Assembly programs are allowed to use symbolic labels (destinations of goto com-

mands) before the symbols are defined. This convention makes the life of assembly
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programmers easier and that of assembler developers harder. A common solution

to this complication is to write a two-pass assembler that reads the code twice, from

start to end. In the first pass, the assembler builds the symbol table and generates

no code. In the second pass, all the label symbols encountered in the program have

already been bound to memory locations and recorded in the symbol table. Thus, the

assembler can replace each symbol with its corresponding meaning (numeric address)

and generate the final binary code.

Recall that there are three types of symbols in the Hack language: predefined

symbols, labels, and variables. The symbol table should contain and handle all these

symbols, as follows.

Initialization Initialize the symbol table with all the predefined symbols and their

pre-allocated RAM addresses, according to section 6.2.3.

First Pass Go through the entire assembly program, line by line, and build the

symbol table without generating any code. As you march through the program lines,

keep a running number recording the ROM address into which the current command

will be eventually loaded. This number starts at 0 and is incremented by 1 whenever

a C-instruction or an A-instruction is encountered, but does not change when a label

pseudocommand or a comment is encountered. Each time a pseudocommand (Xxx)

is encountered, add a new entry to the symbol table, associating Xxx with the ROM

address that will eventually store the next command in the program. This pass results

in entering all the program’s labels along with their ROM addresses into the symbol

table. The program’s variables are handled in the second pass.

Second Pass Now go again through the entire program, and parse each line. Each

time a symbolic A-instruction is encountered, namely, @Xxx where Xxx is a symbol

and not a number, look up Xxx in the symbol table. If the symbol is found in the

table, replace it with its numeric meaning and complete the command’s translation.

If the symbol is not found in the table, then it must represent a new variable. To

handle it, add the pair (Xxx, n) to the symbol table, where n is the next available

RAM address, and complete the command’s translation. The allocated RAM

addresses are consecutive numbers, starting at address 16 ( just after the addresses

allocated to the predefined symbols).

This completes the assembler’s implementation.
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6.4 Perspective

Like most assemblers, the Hack assembler is a relatively simple program, dealing

mainly with text processing. Naturally, assemblers for richer machine languages are

more complex. Also, some assemblers feature more sophisticated symbol handling

capabilities not found in Hack. For example, the assembler may allow programmers

to explicitly associate symbols with particular data addresses, to perform ‘‘constant

arithmetic’’ on symbols (e.g., to use table+5 to refer to the fifth memory location

after the address referred to by table), and so on. Additionally, many assemblers

are capable of handling macro commands. A macro command is simply a sequence of

machine instructions that has a name. For example, our assembler can be extended

to translate an agreed-upon macro-command, say D=M[xxx], into the two instruc-

tions @xxx followed immediately by D=M (xxx being an address). Clearly, such

macro commands can considerably simplify the programming of commonly occur-

ring operations, at a low translation cost.

We note in closing that stand-alone assemblers are rarely used in practice.

First, assembly programs are rarely written by humans, but rather by compilers. And

a compiler—being an automaton—does not have to bother to generate symbolic

commands, since it may be more convenient to directly produce binary machine

code. On the other hand, many high-level language compilers allow programmers to

embed segments of assembly language code within high-level programs. This capa-

bility, which is rather common in C language compilers, gives the programmer direct

control of the underlying hardware, for optimization.

6.5 Project

Objective Develop an assembler that translates programs written in Hack assembly

language into the binary code understood by the Hack hardware platform. The

assembler must implement the translation specification described in section 6.2.

Resources The only tool needed for completing this project is the program-

ming language in which you will implement your assembler. You may also find

the following two tools useful: the assembler and CPU emulator supplied with the

book. These tools allow you to experiment with a working assembler before you

set out to build one yourself. In addition, the supplied assembler provides a visual
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line-by-line translation GUI and allows online code comparisons with the outputs

that your assembler will generate. For more information about these capabilities,

refer to the assembler tutorial (part of the book’s software suite).

Contract When loaded into your assembler, a Prog.asm file containing a valid

Hack assembly language program should be translated into the correct Hack binary

code and stored in a Prog.hack file. The output produced by your assembler must

be identical to the output produced by the assembler supplied with the book.

Building Plan We suggest building the assembler in two stages. First write a

symbol-less assembler, namely, an assembler that can only translate programs that

contain no symbols. Then extend your assembler with symbol handling capabilities.

The test programs that we supply here come in two such versions (without and with

symbols), to help you test your assembler incrementally.

Test Programs Each test program except the first one comes in two versions:

ProgL.asm is symbol-less, and Prog.asm is with symbols.

Add: Adds the constants 2 and 3 and puts the result in R0.

Max: Computes maxðR0;R1Þ and puts the result in R2.

Rect: Draws a rectangle at the top left corner of the screen. The rectangle is 16

pixels wide and R0 pixels high.

Pong: A single-player Ping-Pong game. A ball bounces constantly off the screen’s

‘‘walls.’’ The player attempts to hit the ball with a bat by pressing the left and right

arrow keys. For every successful hit, the player gains one point and the bat shrinks a

little to make the game harder. If the player misses the ball, the game is over. To quit

the game, press ESC.

The Pong program was written in the Jack programming language (chapter 9)

and translated into the supplied assembly program by the Jack compiler (chap-

ters 10–11). Although the original Jack program is only about 300 lines of code,

the executable Pong application is about 20,000 lines of binary code, most of

which being the Jack operating system (chapter 12). Running this interactive pro-

gram in the CPU emulator is a slow affair, so don’t expect a high-powered Pong

game. This slowness is actually a virtue, since it enables your eye to track the

graphical behavior of the program. In future projects in the book, this game will run

much faster.
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Steps Write and test your assembler program in the two stages described

previously. You may use the assembler supplied with the book to compare the out-

put of your assembler to the correct output. This testing procedure is described

next. For more information about the supplied assembler, refer to the assembler

tutorial.

The Supplied Assembler The practice of using the supplied assembler (which pro-

duces correct binary code) to test another assembler (which is not necessarily correct)

is illustrated in figure 6.3. Let Prog.asm be some program written in Hack assembly.

Suppose that we translate this program using the supplied assembler, producing

Figure 6.3 Using the supplied assembler to test the code generated by another assembler.
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a binary file called Prog.hack. Next, we use another assembler (e.g., the one that

you wrote) to translate the same program into another file, say Prog1.hack. Now, if

the latter assembler is working correctly, it follows that Prog.hack = Prog1.hack.

Thus, one way to test a newly written assembler is to load Prog.asm into the sup-

plied assembler program, load Prog1.hack as a compare file, then translate and

compare the two binary files (see figure 6.3). If the comparison fails, the assembler

that produced Prog1.hack must be buggy; otherwise, it may be error-free.
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