Computer Organization \& Assembly Language Programming

Data Storage - II

```
#include<stdio.h>
#include<stdlib.h>
int main() {
    printf("Learning is fun with Arif\n");
    exit(0);
}
```



```
global main
    msg: db "Learning is fun with Arif", OAh, Oh
    len_msg: equ $ - msg
SECTION .text
    main:
        mov rax,1
        mov rax,
        mov rsi,ms
        mov rsi,msg
        mov rdx,len_msg
        syscall
        mov rax,60
        mov rdi,
```

$0:$	$b 8$	01	00	00	00		
$5:$	$b f$	01	00	00	00		
a:	48	be	00	00	00	00	00
$11:$	00	00	00				
$14:$	ba	$1 b$	00	00	00		
$19:$	$0 f$	05					
$1 b:$	b8	$3 c$	00	00	00		
$20:$	bf	00	00	00	00		
$25:$	$0 f$	05					

Slides of first half of the course are adapted from:
https://www.nand2tetris.org
Download s / w tools required for first half of the course from the following link
https://drive.google.com/file/d/0B9c0BdDJz6XpZUh3X2dPR100MUE/view
Instructor: Muhammad Arif Butt, Ph.D.

Today's Agenda

- Encoding Real Numbers
- Fixed Point Representation
- Floating Point Representations (IEEE-754)
- Storage layout
- Conversion Examples
- Range and Precision
- Arithmetic Operations
- Overflow and Underflow
- IEEE-754 Special Values

Encoding Real Numbers

- Most scientific computations are performed using real numbers, i.e., numbers with a fractional part. In order to represent real numbers in computers, we have to ask two questions:
$>$ How many bits are needed to encode a real number?
$>$ How to represent a real numbers using these bits?
- There are two ways to encode the real numbers:
$>$ Fixed Point Representation
$>$ Floating Point Representation

Fixed Point Representation

Unsigned Fixed Point Representation (5 bits)

- Fixed point representation fixes the position of binary point within a register. Therefore fixes the sizes of the whole number and the fractional part of any real number stored inside it

Decimal Binary

- Let us use five bits to represent unsigned real numbers by $0.0 \quad 000.00$ keeping three bits for the integral part and two bits for the 0.25000 .01 $\begin{array}{lll}\text { fractional part (as shown in table) } & 0.5 & 000.10\end{array}$
- Range (max/min values) for this representation is 0 to 7
$0.75 \quad 000.11$
- Precision (smallest distance between two successive $1.0 \quad 001.00$ | numbers) for this representation is $2^{-2}=1 / 4=0.25_{10}$ | 1.25 | 001.01 |
| :--- | :--- | :--- | :--- |
| 1.5 | 001.10 | | $\xrightarrow[0]{1 / 4} H_{1 / 2}^{14} \mathrm{H}_{1}^{3 /}-\mathrm{H}_{2}$

1.5	001.10
1.75	001.11

- Conversion:
$2.0 \quad 010.00$

$$
001.01_{2}=0 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0}+0 \times 2^{-1}+1 \times 2^{-2}=1.25_{10}
$$

$$
6.75_{10}=110.11_{2}
$$

- Integer Arithmetic Work, and there is no need to align binary point!

Signed Fixed Point Representation (16 bits)

- Let us use 16 bits to represent signed fractional numbers by keeping one bit for the sign, 11 bits for the integer part and 4 bits for the fractional part

S Integer part (11) Fractional part (4)

- Range for this representation:

$$
>\text { From: }-\left[\left(2^{11}-1\right)+\left(1-2^{-4}\right)\right]=-2047.9375_{10}
$$

$$
>\text { To: } \quad\left(2^{11}-1\right)+\left(1-2^{-4}\right)=+2047.9375_{10}
$$

- Precision for this representation: $2^{-4}=1 / 16=0.0625_{10}$
- Advantage: Arithmetic and logical operations can be performed on fixed point numbers using integer arithmetic (Performance). No FPU required

Limitations of Fixed Point Representation

- To represent very large numbers, we need to give more bits to the integer part and less bits to the fractional part. This will make it hard to represent small numbers
- Similarly to represent very small numbers, we need to give more bits to the fractional part and less bits
 to the integer part. This will make it hard to represent large numbers S \quad Integer part (11) \quad Fractional part (4)

1. Limited integer range. It is not possible to represent very large and very small numbers with the same representation
2. Small precision, e.g., keeping 4 bits for the fractional part, the smallest fraction that can be represented is $1 / 16$
3. It is easy for an arithmetic operation to produce an overflow and underflow
$>$ Overflow will occur when the result is large to fit in the representation ($+/-$ 2047.9375 for 16 bit representation)
$>$ Underflow will occur when the result is too small to fit in the representation, e.g., if the result of the arithmetic is less than 0.0625 . It can't be represented in above scheme

Floating Point Representation

Floating Point Representation

- The concept of floating point binary numbers was introduced in the mid 1950s. It uses scientific notation for storing the real numbers, thus increasing the range as well as precision of real numbers

$$
+/-M \times 2^{+/-E}
$$

Mantisssa (8) Exponent (8)

- One of the possible 16 bit representation is shown above. The mantissa with its sign, and the exponent with its sign were saved in 2 s complements format in 8 bits each
- There was no uniformity in the formats used to represent floating point numbers and programs were not portable from one manufacturer's computer to another
- To resolve the issue, a Standards Committee was formed by the Institute of Electrical and Electronics Engineers (IEEE) to standardize how floating point binary numbers would be represented in computers
- This standard, called IEEE Standard 754 for floating point numbers, was adopted in 1985 by all computer manufacturers. It allowed porting of programs from one computer to another without the answers being different. The standard was updated in 2008 and then in 2019. The current standard is IEEE 754-2019

IEEE-754 Standard for Floating Point Representation

IEEE 754 Standard for FP Representation

- A 32 bit floating point representation using IEEE-754 standard is shown below:

```
S Exponent & its sign (8)
Mantissa (23)
+/-M < 2 +/-E
```

- The sign of the real number is stored in the MSb, followed by 8 bit exponent and then a 23 bit mantissa
- The mantissa presents the precision/accuracy. To increase precision, IEEE 754 Standard uses a normalized mantissa which implies that its most significant bit is always 1 . So the mantissa actually has 24 bit precision, but only 23 bits need to be stored
- The exponent bits represent the range. To store the exponent and its sign, one can use 2 's complement encoding. But the designers of IEEE-754 used some thing known a biased notation. WHY?

\$100 Question: Why exponent is saved in bias Notation?

\$100 Question: Why exponent bits are before Mantissa?

S Exponent \& its sign
(8)

Why does IEEE 754 standard use biased exponent representation and place it before the mantissa?

- The first advantage of use of biased exponent is that, it allows to have different numbers of positive and negative exponents (as discussed on previous slide)
- Keeping this biased exponent bits before the mantissa bits allows two floating point numbers to be compared easily. As you can see in the table the biased exponents are in lexical order. This would not have been possible if exponent is saved in 2's complement. So, this way sorting real numbers may also be carried out by IU as biased exponent are the most significant bits

True/Real Biased
Exponent Exponent

-127	+127	0
-126		1
-125		2
-124		3
...	-127	...
...		...
-1		126
0		127
1		128
...		...
...		...
125		252
126		253
127		254
128		255

Conversion Examples

Example 1

Convert $\mathbf{0 . 0 9 3 7 5}_{\mathbf{1 0}}$ to 32 bit IEEE-754 floating point representation in Hex format
S Exponent \& its sign (8)

Mantissa (23)

1. Determine the sign bit: Positive, so 0

$0.09375 \times 2=0.1875$	0
$0.1875 \times 2=0.375$	0
$0.375 \times 2=0.75$	0
$0.75 \times 2=1.5$	1

3. Normalize (to get mantissa and true exponent): $\quad 0.00051 \mathrm{x} \neq=11100 \times 2^{-4} 1$
4. Determine biased exponent: $\quad-4+127=123_{10}=01111011_{2}$
5. Remove leading 1 from mantissa: $\quad 1.100=10000000000000000000000$
(Implied 1 on the left of the radix point is not stored)
6. Assemble the result: 0 0 01111011 1000000000000000000000
7. Write Result in Hex: $00111101110000000000000000000000_{2}$ 3DC00000

Example 2

Convert $\mathbf{- 1 2 3 . \mathbf { 3 } _ { 1 0 }}$ to 32-bit IEEE-754 floating point representation in Hex format

S	Exponent \& its sign (8)	Mantissa (23)

1. Determine the sign bit: Negative, so 1
2. Convert to pure binary: $1111011.0100110011 \ldots 2$
3. Normalize (to get mantissa and true exponent): $=1.1110110100 .8 \times 2=1.6 \times 2=10.2 \times 2^{+6} 1$
$0.2 \times 2=0.4 \quad 0$
4. Determine biased exponent: $\quad+6+127=133_{10}=100001010.4 \times 2=1.8 \quad 0$
5. Remove leading 1 from mantissa: $=.11101101001100110011001 \ldots$
(Implied 1 on the left of the radix point is not stored)
\checkmark Round mantissa up or down if necessary: $=.11101101001100110011010$
6. Assemble the result:
7. Write Result in Hex: $11000010111101101001100110011_{1010}$ C2F6999A $\mathbf{1 6}_{\mathbf{1 6}}$

Example 3

Given the 32-bit IEEE-754 floating point representation 426A0000 $\mathbf{1 6}^{\mathbf{1 6}}$ find the decimal value

1. Convert to pure binary: $01000010011010100000000000000000_{2}$
2. Split to components:
```
0
```

3. Determine sign: 0 , so positive
4. Determine biased exponent: $10000100_{2}=132_{10}$
5. Get true exponent: $132-127=+5$
6. Write the result: $+1.11010100000000000000000 \times 2^{+5}=+111010.1000000=+58.5$

(Don't forget to write the implicit one before the significand bits)

Example 4

Given the 32-bit IEEE-754 floating point representation 41440000016 find the decimal value

1. Convert to pure binary: $01000001010001000000000000000000_{2}$
2. Split to components:
3. Determine sign: 0 , so positive
4. Determine biased exponent: $10000010_{2}=130_{10}$
5. Get true exponent: $130-127=+3$
6. Write the result: $+1.10001000000000000000000 \times 2^{3}=+1100.01000=+\mathbf{1 2 . 2 5}$
(Don't forget to write the implicit one before the significand bits)

Range/Precision of IEEE FP Representation

S Exponent \& its sign (8) Mantissa (23)

Range (32 bit):
 ```0/1 111111110```

- Exponent: 254-127 = +127 An exponent of all 1 s is reserve (more on it later)
- Significand: $1.111 \ldots 1=1+\left(1-2^{-23}\right)=2-2^{-23}$
- Range: $+/-\left(2-2^{-23}\right) \times 2^{+127}=+/-3.403 \times 10^{+38}$

\section*{| Precision (32 bit): | $0 / 1$ | 00000001 | 00000000000000000000000 |
| :--- | :--- | :--- | :--- | :--- |}

- Exponent: 1-127 =-126 An exponent of all 0 s is reserve (more on it later)
- Significand: 1.000... $0=1$
- Precision: $\quad+/-1 \times 2^{-126}=+/-1.1755 \times 10^{-38}$

Storage Layout for IEEE FP Representation

- Single Precision (32 bits):

S	Exponent \& its sign (8)	Mantissa (23)
	Exponent bias $=2^{(8-1)}-1=127$	Precision $=23 \times \log _{10} 2=6$ decimal digits

- Double Precision (64 bits):

$$
\begin{array}{|c|c}
\text { S } & \text { Exponent \& its sign (11) } \\
\text { Exponent bias }=2^{(11-1)}-1=1023 & \text { Mantissa (52) } \\
\text { Precision }=52 \times \log _{10} 2=15 \text { decimal digits }
\end{array}
$$

- Quadruple Precision (128 bits):

$$
\begin{array}{|c|c}
\hline \text { S } & \text { Exponent \& its sign (15) } \\
\text { Exponent bias }=2^{(15-1)}-1=16383 & \text { Mantissa (112) } \\
\text { Precision }=112 \times \log _{10} 2=33 \text { decimal digits }
\end{array}
$$

- Octuple Precision (256 bits):

S	Exponent \& its sign (19) Exponent bias $\left.=2^{(0.1)}\right)-1=262143$	Mantissa (236)
Precision $=236 \times$ x $\log _{10} 2=71$ decimal digits		

Floating Point Arithmetic

Floating Point Computation

- Overflow: An overflow occurs when a mathematical operation results in a value that falls outside the range of a data type. In case of 32 bit FP operations any result that falls outside $+/-3.403 \times 10^{+38}$ will be rounded to infinity. (e.g., $a=3.0 \times 10^{30}$ then $a * a$ will overflow)
- Underflow: An underflow occurs when an operation results in a value that is smaller that the smallest number that can be stored as a floating point number. (Remember there is no underflow in integer arithmetic). In case of 32 bit FP operations any result that is less than $+/-1.1755 \times 10^{-38}$ is an underflow. (e.g., $a=3.0 \times 10^{-30}$ then $a *$ a will underflow)
- So good programs must detect round-off errors as well as overflow/ underflow and raise alerts whenever they occur

IEEE 754: Special Values

- Infinity: All 1s in the exponent field and all 0 s in the mantissa field represent infinity in the IEEE standard. The sign bit distinguishes between negative infinity and positive infinity. Operations with infinite values are well defined in IEEE floating point
- Zero: All 0 s in the exponent field and all 0 s in the mantissa field represent zero in the IEEE standard. Even though +0 and -0 have distinct representations, though they both compare as equal

Exponent Value	Mantissa	Represents
11111111	00000000	Infinity
00000000	00000000	Zero
11111111	Not all zeros	Not a Number (NaN)
00000000	Not all zeros	Subnormal (very small)

IEEE 754: Special Values

- Not a Number (NaN): When an operation is performed by a computer on a pair of operands which results in an indeterminate answer, it is called NaN in IEEE standard. All 1 s in the exponent field and not all 0 s in the mantissa field represent NaN
- Subnormal Number: If the exponent bits are all zeros, and the mantissa are not all zeros, the value being represented is very very small. This is known as a sub-normal or de-normalized number

Exponent Value	Mantissa	Represents
11111111	00000000	Infinity
00000000	00000000	Zero
11111111	Not all zeros	Not a Number (NaN)
00000000	Not all zeros	Subnormal (very small)

Things To Do

- Represent following decimal numbers using 32-bit IEEE-754 floating point representation:
- 19.59375
- 127.69
- -68.34
- Given the 32-bit IEEE-754 floating point numbers, find their corresponding decimal values: exactly what I'm telling you !
- 0x4355AE14
- 0xC18A0000
- Confirm your working by using online IEEE-754 converter:
https://www.binaryconvert.com/index.html

Coming to office hours does NOT mean you are academically week!

