
Lecture # 22
Data Path of Hack CPU - I

Computer Organization & Assembly Language Programming

#include<stdio.h>
#include<stdlib.h>
int main(){
printf("Learning is fun with Arif\n");
exit(0);

}

 global main
SECTION .data

msg: db "Learning is fun with Arif", 0Ah, 0h
len_msg: equ $ - msg

SECTION .text
main:

mov rax,1
mov rdi,1
mov rsi,msg
mov rdx,len_msg
syscall
mov rax,60
mov rdi,0
syscall

0: b8 01 00 00 00
5: bf 01 00 00 00
a: 48 be 00 00 00 00 00
11: 00 00 00
14: ba 1b 00 00 00
19: 0f 05
1b: b8 3c 00 00 00
20: bf 00 00 00 00
25: 0f 05

Instructor: Muhammad Arif Butt, Ph.D.

Slides of first half of the course are adapted from:
https://www.nand2tetris.org
Download s/w tools required for first half of the course from the following link:
https://drive.google.com/file/d/0B9c0BdDJz6XpZUh3X2dPR1o0MUE/view

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	5 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	25

Solution: multiplex, using an instruction register

program

Memory

data

ALU

instruction	
register

data	
address

fetch /
execute
bit

mux

instruction

instruction	
address

Memory	
address	

input	

control	bus

address	bus

Memory	
output

address	bus (data	flows	not	shown,	to	minimize	clutter)

load	
on	
fetch

instruction

data

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	1 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	33

Interactive simulation (using Xor as an example)

Simulation process:
• Load the HDL file into the hardware simulator
• Enter values (0’s and 1’s) into the chip’s input pins (e.g. a and b)
• Evaluate the chip’s logic
• Inspect the resulting values of:

q Output pins (e.g. out)
q Internal pins (e.g. nota, notb, aAndNotb, notaAndb)

a

Not

Not

And

And

Or

b

out
nota

notb aAndNotb

notaAndb

Xor.hdl
CHIP Xor {

IN a, b;
OUT out;

PARTS:
Not (in=a, out=nota);
Not (in=b, out=notb);
And (a=a, b=notb, out=aAndNotb);
And (a=nota, b=b, out=notaAndb);
Or (a=aAndNotb, b=notaAndb, out=out);

}

CHIP Xor {
IN a, b;
OUT out;
PARTS:
Not(in=a, out=nota);
Not(in=b, out=notb);
And(a=nota, b=b, out=w1);
And(a=a, b=notb, out=w2);
Or(a=w1, b=w2, out=out);

}

@R1
D=M
@temp
M=D

0000000000000001
1111110000010000
0000000000010000
1110001100001000

• Von Neumann Architecture
• Flow of Information inside Computers
• Buses
– Data Bus
– Address Bus
– Control Bus

• Fetch Execute Cycle
• Fetch Execute Clash
• Harvard Architecture

2

Today’s Agenda

Instructor: Muhammad Arif Butt, Ph.D.

3

Von Neumann Architecture

Instructor: Muhammad Arif Butt, Ph.D.

4

Von Neumann Architecture

Instructor: Muhammad Arif Butt, Ph.D.

ALU

program

Memory CPU

Registers

output

data

intput

The Von Neumann architecture is a computer architecture given by a mathematician and physicist John von
Neumann describes the design architecture for an electronic digital computer with these components:
Ø A Processing Unit that contains an ALU and registers
Ø A Control Unit that contains an instruction register and program counter
Ø A Memory unit that stores data and instructions
Ø An Input and Output mechanism
Ø An external mass storage

CU

5

Flow of Information inside a
Computer System

Instructor: Muhammad Arif Butt, Ph.D.

6

Information Flow

Instructor: Muhammad Arif Butt, Ph.D.

program

Memory CPU

data

ALUregisters

�
�
�

Data bus

Address bus

Control bus

7

The Arithmetic Logic Unit

Instructor: Muhammad Arif Butt, Ph.D.

ALU

Data bus

8

The Control

Instructor: Muhammad Arif Butt, Ph.D.

ALU

Data bus

Control bus

9

Data Registers

Instructor: Muhammad Arif Butt, Ph.D.

CPU

ALUregisters

�
�
�

Data bus

10

Address Registers

Instructor: Muhammad Arif Butt, Ph.D.

CPU

ALUregisters

�
�
�

Data bus

Address bus

11

Memory

Instructor: Muhammad Arif Butt, Ph.D.

CPU

ALUregisters

�
�
�

Data bus

Address bus

program

Memory

data

12

Data Memory

Instructor: Muhammad Arif Butt, Ph.D.

CPU

ALUregisters

�
�
�

Data bus

Address bus

Memory

data

13

Program Memory

Instructor: Muhammad Arif Butt, Ph.D.

CPU

registers

�
�
�

Data bus

Address bus

program

Memory

Control bus

14

Overall Picture

Instructor: Muhammad Arif Butt, Ph.D.

program

Memory CPU

data

ALUregisters

�
�
�

Data bus

Address bus

Control bus

15

Overview of
General Fetch-Execute Cycle

Instructor: Muhammad Arif Butt, Ph.D.

16

Basic CPU Loop

Instructor: Muhammad Arif Butt, Ph.D.

Repeat:
• Fetch an instruction from the program memory
• Execute the instruction

17

Fetching

Instructor: Muhammad Arif Butt, Ph.D.

• Put the location of the next instruction in the Memory address input

• Read the contents of the memory from that location to get the
instruction code

Program Counter

Instruction

program

data

Memory address input

Memory output

• Default: PC++
• Jump: PC = address

18

Executing

Instructor: Muhammad Arif Butt, Ph.D.

• The instruction code specifies “what to do”
• Which arithmetic or logical instruction to execute
• Which memory address to access (for read / write)
• If / where to jump
• …

• Executing the instruction involves:
• accessing registers and / or
• accessing the data memory

Different subset of the instruction
bits controls different aspects of
the operation

19

Fetch Execute

Instructor: Muhammad Arif Butt, Ph.D.

program

Memory

data

ALU

Data bus

Address bus

Control bus

data

instruction

data addressinstruction address

20

Fetch-Execute Clash

Instructor: Muhammad Arif Butt, Ph.D.

program

Memory

data

ALU

Data bus

Address bus

Control bus

data

instruction

data addressinstruction address

If the Memory is one address space:
This scheme will not work:
• one Memory input
• one Memory output

21

Fetch-Execute Clash (cont…)

Instructor: Muhammad Arif Butt, Ph.D.

Program

Memory

Data

Data bus

Address bus

Control bus

data addressinstruction address

If the Memory is one address space:
This scheme will not work:
• one Memory input
• one Memory output

Memory output

Memory address input

22Instructor: Muhammad Arif Butt, Ph.D.

Program

Memory

Data

Data bus

Address bus

Control bus
Data addressInstruction address (PC)

Memory output

Memory address input

Data, when executing

Instruction, when fetching

mux
Fetch / Execute bit

Solution: multiplex, using an instruction register

23

Solution: multiplex, using an instruction register

Instructor: Muhammad Arif Butt, Ph.D.

Program

Memory

Data

Data bus

Address bus

Control bus
data addressinstruction address

Memory output

Memory address input

mux

Instruction
register
load on fetch

fetch / execute bit

instruction

ALU

instruction

data

24

Simpler Solution: Harvard Architecture

Instructor: Muhammad Arif Butt, Ph.D.

Variant of von Neumann Architecture (used by the Hack computer):

Two physically separate memory units:

• Instruction memory

• Data memory

Advantage:

• Complication avoided

Disadvantage:

• Two memory chips instead of one

• The size of the two chips is fixed

Each can be addressed and manipulated
seperately, and simultaneously

25

Hack Computer Architecture

Instructor: Muhammad Arif Butt, Ph.D.

instruction
memory

ALU data
memory

D register

A register

PC

data outinstruction

data inaddress of
next
instruction

Hack CPU

26

Things To Do

Instructor: Muhammad Arif Butt, Ph.D.

