
Lecture # 22
Data Path of Hack CPU - I

Computer Organization & Assembly Language Programming

#include<stdio.h>
#include<stdlib.h>
int main(){
printf("Learning is fun with Arif\n");
exit(0);

}

 global main
SECTION .data   

msg: db "Learning is fun with Arif", 0Ah, 0h
len_msg: equ $ - msg

SECTION .text   
main:      

mov rax,1      
mov rdi,1       
mov rsi,msg
mov rdx,len_msg
syscall
mov rax,60      
mov rdi,0      
syscall

0:  b8 01 00 00 00       
5:  bf 01 00 00 00       
a:  48 be 00 00 00 00 00 
11: 00 00 00   
14: ba 1b 00 00 00       
19: 0f 05 
1b: b8 3c 00 00 00       
20: bf 00 00 00 00 
25: 0f 05

Instructor: Muhammad Arif Butt, Ph.D.

Slides of first half of the course are adapted from:
https://www.nand2tetris.org
Download s/w tools required for first half of the course from the following link:
https://drive.google.com/file/d/0B9c0BdDJz6XpZUh3X2dPR1o0MUE/view
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Solution: multiplex, using an instruction register
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Interactive simulation (using Xor as an example)

Simulation process:
• Load the HDL file into the hardware simulator
• Enter values (0’s and 1’s) into the chip’s input pins (e.g.  a and b)
• Evaluate the chip’s logic
• Inspect the resulting values of:

q Output pins (e.g.  out) 
q Internal pins (e.g.  nota, notb, aAndNotb, notaAndb)
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Xor.hdl
CHIP Xor {

IN a, b;
OUT out;

PARTS:
Not (in=a, out=nota);
Not (in=b, out=notb);
And (a=a, b=notb, out=aAndNotb);
And (a=nota, b=b, out=notaAndb);
Or (a=aAndNotb, b=notaAndb, out=out);

}

CHIP Xor {
IN a, b;
OUT out;
PARTS:
Not(in=a, out=nota);
Not(in=b, out=notb);
And(a=nota, b=b, out=w1);
And(a=a, b=notb, out=w2);
Or(a=w1, b=w2, out=out);

}

@R1
D=M
@temp
M=D

0000000000000001
1111110000010000
0000000000010000
1110001100001000



• Von Neumann Architecture
• Flow of Information inside Computers
• Buses
– Data Bus
– Address Bus
– Control Bus

• Fetch Execute Cycle
• Fetch Execute Clash
• Harvard Architecture
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Today’s Agenda

Instructor: Muhammad Arif Butt, Ph.D.
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Von Neumann Architecture

Instructor: Muhammad Arif Butt, Ph.D.
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Von Neumann Architecture

Instructor: Muhammad Arif Butt, Ph.D.
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The Von Neumann architecture is a computer architecture given by a mathematician and physicist John von
Neumann describes the design architecture for an electronic digital computer with these components:
Ø A Processing Unit that contains an ALU and registers
Ø A Control Unit that contains an instruction register and program counter
Ø A Memory unit that stores data and instructions
Ø An Input and Output mechanism
Ø An external mass storage

CU
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Flow of Information inside a
Computer System

Instructor: Muhammad Arif Butt, Ph.D.
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Information Flow

Instructor: Muhammad Arif Butt, Ph.D.
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The Arithmetic Logic Unit

Instructor: Muhammad Arif Butt, Ph.D.
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The Control

Instructor: Muhammad Arif Butt, Ph.D.
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Data Registers

Instructor: Muhammad Arif Butt, Ph.D.

CPU

ALUregisters

�
�
�

Data bus



10

Address Registers

Instructor: Muhammad Arif Butt, Ph.D.
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Memory

Instructor: Muhammad Arif Butt, Ph.D.
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Data Memory

Instructor: Muhammad Arif Butt, Ph.D.
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Program Memory

Instructor: Muhammad Arif Butt, Ph.D.
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Overall Picture

Instructor: Muhammad Arif Butt, Ph.D.
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Overview of
General Fetch-Execute Cycle

Instructor: Muhammad Arif Butt, Ph.D.
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Basic CPU Loop

Instructor: Muhammad Arif Butt, Ph.D.

Repeat:
• Fetch an instruction from the program memory
• Execute the instruction
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Fetching

Instructor: Muhammad Arif Butt, Ph.D.

• Put the location of the next instruction in the Memory address input

• Read the contents of the memory from that location to get the
instruction code

Program Counter

Instruction

program

data

Memory  address  input

Memory  output

• Default: PC++
• Jump: PC = address
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Executing

Instructor: Muhammad Arif Butt, Ph.D.

• The instruction code specifies “what to do”
• Which arithmetic or logical instruction to execute
• Which memory address to access (for read / write)
• If / where to jump
• …

• Executing the instruction involves:
• accessing registers and / or
• accessing the data memory

Different subset of the instruction 
bits controls different aspects of 
the operation
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Fetch Execute

Instructor: Muhammad Arif Butt, Ph.D.
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Fetch-Execute Clash

Instructor: Muhammad Arif Butt, Ph.D.
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If the Memory is one address space: 
This scheme will not work:
• one Memory input
• one Memory output
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Fetch-Execute Clash (cont…)

Instructor: Muhammad Arif Butt, Ph.D.
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Solution: multiplex, using an instruction register
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Solution: multiplex, using an instruction register

Instructor: Muhammad Arif Butt, Ph.D.
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Simpler Solution: Harvard Architecture

Instructor: Muhammad Arif Butt, Ph.D.

Variant of von Neumann Architecture (used by the Hack computer):

Two physically separate memory units:

• Instruction memory

• Data memory

Advantage:

• Complication avoided

Disadvantage:

• Two memory chips instead of one

• The size of the two chips is fixed

Each can be addressed and manipulated  
seperately, and simultaneously



25

Hack Computer Architecture

Instructor: Muhammad Arif Butt, Ph.D.
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Things To Do

Instructor: Muhammad Arif Butt, Ph.D.


