

Computer Organization & Assembly Language Programming

CHIP Xor {	
IN a, b;	
OUT out;	
PARTS:	
Not(in=a, out=nota);	
Not(in=b, out=notb);	
And(a=nota, b=b, out=w1);	
And(a=a, b=notb, out=w2);	
Or(a=w1, b=w2, out=out);	
}	

1110001100001000

Lecture # 26

Evolution of Intel Micro-Processors

Today's Agenda

- Intel 4004 (1971)
- Intel 8008
- Intel 8080
- Intel 8086 (x86)
- Intel 80286
- Intel 80386
- Intel 80486
- Intel 80586 (Pentium P5)
- Intel 80686 (Pentium P6)
- Intel Core (2006)

- 1. Intel Nehalam (2008)
- 2. Intel Sandy Bridge
- 3. Intel Ivy Bridge
- 4. Intel Haswell
- 5. Intel Broadwell
- 6. Intel Sky Lake
- 7. Intel Kaby Lake
- 8. Intel Coffee Lake
- 9. Intel Coffee Lake Refresh
- 10. Intel Comet Lake (2019)

Characteristics:

• 4-bit data bus (register/word size)

Intel-4004: 1971

- 12-bit address bus that could address 4 KiB of memory
- 2300 transistors
- 400 800 KHz
- 16-pin DIP package
- One instruction took eight clock cycles to complete (Fetch, Decode Execute)
- Used in Busicom Calculator (BCD oriented)

- 8-bit data bus (register/word size)
- 14-bit address bus that could address 16 KiB of memory
- 3500 transistors
- 500 800 KHz
- 18-pin DIP package
- Introduced the concept of interrupts

Intel-8080: 1974

- 8-bit data bus (register size)
- 16-bit address bus that could address 64 KiB of memory
- 4500 transistors
- 2 MHz
- 40-pin DIP package

Intel-8086: 1978

- 16-bit data bus (register size)
- 20-bit address bus that could address 1 MiB of memory
- Introduced Segmented memory model (for portability of 8080 programs)
- 29K transistors
- 5-10 MHz
- 40-pin DIP package
- Separate 8087 Floating Point Unit (Math co-processor)
- Used in low cost microcontroller now Instructor: Muhammad Arif Butt, Ph.D.

Intel-80286: 1982

- 16-bit data bus (register size)
- 24-bit address bus that could address 16 MiB of memory
- 134 K transistors
- 20 MHz
- Separate 80287 Floating Point Unit (Math co-processor)
- Introduced the concept of Protected Memory
- Introduced IDE bus architecture
- Introduced DMA controller

Intel-80386: 1985

- 32-bit data bus (register size)
- 32-bit address bus that could address 4 GiB of memory
- 275 K transistors
- 16-33 MHz
- Separate 80387 Floating Point Unit (Math co-processor)
- Introduced the concept of memory paging and virtual memory

Intel-80486: 1989

- 32-bit data bus (register size)
- 32-bit address bus that could address 4 GiB of memory
- 1.2 M transistors
- 25-100 MHz
- Built in 8 KiB cache
- Integrated FPU (Math co-processor)
- Introduced the concept of instruction pipelining
- 80486 showed 50% improved performance over 80386 processor Instructor: Muhammad Arif Butt, Ph.D.

Intel-80586/Intel-P5: 1993

Intel-P5 microarchitecture was introduced in 1993, which was a direct extension of the 80486 architecture and frequently referred to as i586. Pentium-I and Pentium-II were the Intel models/brands based on P5 architecture

- 64-bit data bus (register size)
- 64-bit address bus that could address 16 Exbi Byte of memory
- 3.2 M transistors
- 60-300 MHz
- 8 KiB on-chip data and instruction caches (2-way associative)
- Super-scalar design with two parallel 5-stages pipelines, so can execute two instructions per cycle
- Later versions introduced MMX instructions, that support SIMD operations

Intel-80686/Intel-P6: 1997

Intel-P6 microarchitecture was introduced in 1997, which was a direct extension of the 80586 architecture and frequently referred to as i686

- 64 bit data/address bus and 3.8+ GHz
- 16-32 KiB on-chip data and instruction caches
- Super-scalar design with three parallel 12-stages pipeline, so can execute 3 instructions in each clock cycle
- Supports out of order execution, register renaming, improved branch prediction, and speculative instruction execution
- Pentium-III was an Intel brand/brand based on P6 architecture, which introduced a new SIMD technology called Streaming SIMD Extension (SSE)
- Pentium-IV was an intel brand/model based on p6 architecture, having a clock support of upto 3.8+ GHZ and support of hyper-threading technology

Intel Core: 2006

Intel Nehalem: 2008

1st Generation

- **Corei3:** slow clock speed w/o turbo-boost, normally having 2 cores 4 threads with HT enabled
- Corei5: comes with turbo-boost, normally having 4 cores 4 threads with HT disabled
- **Corei7:** comes with more cores, more clock speed and more cache. Normally have 8 cores 16 threads with HT enabled

Intel Sandy Bridge: 2011

2nd Generation

Intel Ivy Bridge: 2012

Intel Kaby Lake: 2016

7th Generation

Intel Kaby Lake R: 2017

(intel) CORE[®]i5 8th Gen

Instructor: Muhammad Arif Butt, Ph.D.

8th Generation

Intel Coffee Lake: 2017

9th Generation

Intel Cannon Lake: 201810th Generation

Things To Do

Coming to office hours does NOT mean you are academically week!