
Lecture # 28
Programming Model of x86 Architecture

Computer Organization & Assembly Language Programming

#include<stdio.h>
#include<stdlib.h>
int main(){
printf("Learning is fun with Arif\n");
exit(0);

}

 global main
SECTION .data

msg: db "Learning is fun with Arif", 0Ah, 0h
len_msg: equ $ - msg

SECTION .text
main:

mov rax,1
mov rdi,1
mov rsi,msg
mov rdx,len_msg
syscall
mov rax,60
mov rdi,0
syscall

0: b8 01 00 00 00
5: bf 01 00 00 00
a: 48 be 00 00 00 00 00
11: 00 00 00
14: ba 1b 00 00 00
19: 0f 05
1b: b8 3c 00 00 00
20: bf 00 00 00 00
25: 0f 05

Instructor: Muhammad Arif Butt, Ph.D.

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	5 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	25

Solution: multiplex, using an instruction register

program

Memory

data

ALU

instruction	
register

data	
address

fetch /
execute
bit

mux

instruction

instruction	
address

Memory	
address	

input	

control	bus

address	bus

Memory	
output

address	bus (data	flows	not	shown,	to	minimize	clutter)

load	
on	
fetch

instruction

data

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	1 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	33

Interactive simulation (using Xor as an example)

Simulation process:
• Load the HDL file into the hardware simulator
• Enter values (0’s and 1’s) into the chip’s input pins (e.g. a and b)
• Evaluate the chip’s logic
• Inspect the resulting values of:

q Output pins (e.g. out)
q Internal pins (e.g. nota, notb, aAndNotb, notaAndb)

a

Not

Not

And

And

Or

b

out
nota

notb aAndNotb

notaAndb

Xor.hdl
CHIP Xor {

IN a, b;
OUT out;

PARTS:
Not (in=a, out=nota);
Not (in=b, out=notb);
And (a=a, b=notb, out=aAndNotb);
And (a=nota, b=b, out=notaAndb);
Or (a=aAndNotb, b=notaAndb, out=out);

}

CHIP Xor {
IN a, b;
OUT out;
PARTS:
Not(in=a, out=nota);
Not(in=b, out=notb);
And(a=nota, b=b, out=w1);
And(a=a, b=notb, out=w2);
Or(a=w1, b=w2, out=out);

}

@R1
D=M
@temp
M=D

0000000000000001
1111110000010000
0000000000010000
1110001100001000

For resources visit my personal website:
https://www.arifbutt.me
and course bitbucket repository:
https://bitbucket.org/arifpucit/coal-repo

• Intel 8080
– Memory Model
– Register Set

• Intel 8086
– Memory Model
– Register Set
– Organization
– Limitation of Intel Segmented Memory Model

• Intel 80386
– Memory Model
– Register Set

• AMD and Intel x86-64
– Memory Model
– Register Set

2

Today’s Agenda

Instructor: Muhammad Arif Butt, Ph.D.

3

Intel 8080

Instructor: Muhammad Arif Butt, Ph.D.

Characteristics:
• 8-bit data bus (register size)
• 16-bit address bus that could address 64 KiB of memory
• 4500 transistors
• 2 MHz
• 40-pin DIP package

4Instructor: Muhammad Arif Butt, Ph.D.

Memory Model of Intel 8080
• In 1974, Intel introduced its 8-bit Intel-8080 CPU with an address

bus of 16 bits. The designers of Intel 8080 processor used the linear
memory model to access memory and the processor could access a
total memory of 64K locations using the 16 lines of the address bus

• This is called Linear memory model, also known as the Flat
memory model, which refers to a memory addressing technique in
which memory is organized in a single, sequential and contiguous
address space

• The addressing is simple, you put a 16-bit address on the address
bus and you get back the 8-bit value that is stored at that address

• It is important to note that there is no necessary relation between the
number of address lines in a memory system and the size of the data
stored at each location. The 8080 stored 8 bits at each location, but it
could have stored 16, 32, or even 64 bits at each location, and still
have 16 memory address lines

0x0000

0xFFFF

Memory

5

Register Set: 8080 Processor

Instructor: Muhammad Arif Butt, Ph.D.

SP

Special Registers;
015

IP

SF ZF - AF - PF - CF
7 6 5 4 3 2 1 0

Flags Register:

0x0000

0xFFFF

MemoryAccumulator Register:

B C

D E

H L

BC = B+C

General Registers

DE = D+E

HL = H+L

00 77
015

07
Instruction Set:
• Data moving instructions
• Arithmetic - add, subtract, increment and

decrement
• Logic - AND, OR, XOR and rotate
• Control transfer - conditional, unconditional, call

subroutine, return from subroutine and restarts
• Input/Output instructions

Adddressing Modes:

• Immediate
• Register
• Direct
• Register indirect

6

Intel 8086

Instructor: Muhammad Arif Butt, Ph.D.

Characteristics
• 16-bit data bus (register size)

• 20-bit address bus that could address 1 MiB of memory

• Introduced Segmented memory model
• Separate 8087 Floating Point Unit (Math co-processor)

• Used in low cost microcontroller now

7Instructor: Muhammad Arif Butt, Ph.D.

• Intel-8086 CPU has an addressable memory of 1 MiB,
which is 16 times more than Intel 8080

• Intel wanted to port all assembly programs running on
8080 to run on 8086 as well

• To make this porting possible, the designers of 8086
divided its memory in 64 KiB segments, so that a 8080
program could be loaded into a 64 KiB memory
segment and can execute successfully

• Intel 8086 memory model is known as Segmented
memory model, which divides the memory into groups
of independent segments referenced by pointers located
in special CPU registers called segment registers

• Code, data and stack can appear as three distinct units in
memory

Segment
Register

0xFFFFF

0x00000

0x80000

64KiB Memory
Segment

Memory Model of Intel 8086
Memory

8

Register Set: 8086 Processor

Instructor: Muhammad Arif Butt, Ph.D.

AH AL

BH BL

CH CL

DH DL

AX = AH+AL

General Purpose Registers

BX = BH+BL

CX = CH+CL

DX = DH+DL

SP

Special Purpose Registers

BP

SI

DI

00 77
015

015

IP

CS

DS

SS

ES

015

- - - - OF DF IF TF SF ZF - AF - PF - CF
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Flags Register

Segment
Register

0xFFFFF

0x00000

0x80000

64KiB Memory
Segment

Memory

9

Segmented Memory of 8086 Processor

Instructor: Muhammad Arif Butt, Ph.D.

00000H

FFFFFH
Memory

Data Segment
(64KB)

Code Segment
(64KB)

Stack Segment
(64KB)

Extra Segment
(64KB)

Data Segment Base Address (DS)

Offset Address (SI)

Code Segment Base Address (CS)

Offset Address (IP)

Stack Segment Base Address (SS)

Top of the stack (SP)

Extra Segment Base Address (ES)

Offset Address (DI)

Base of the stack (BP)

Segment registers (DS, CS, SS,
ES) hold the upper 16 bits of the
starting addresses of the
respective four memory segments

Offset registers (IP, SP, BP, SI,
DI) contains the 16 bits address
within the respective memory
segments

Example:
CS = 0x3F2A
IP = 0x1B08
CS:IP = 3F2A:1B08
P.A = CS * 1016 + IP
P.A = 3F2A * 10 + 1B08
P.A = 3F2A0 + 1B08 = 40DA8

20-bits physical
address

10

Segmented Memory of 8086 Processor

Instructor: Muhammad Arif Butt, Ph.D.

00000H

FFFFFH
Memory

Data Segment
(64KB)

Code Segment
(64KB)

Stack Segment
(64KB)

Extra Segment
(64KB)

Example:
CS = 0x3F2A
IP = 0x1B08
CS:IP = 3F2A:1B08
P.A = CS * 1016 + IP
P.A = 3F2A * 10 + 1B08
P.A = 3F2A0 + 1B08 = 40DA8

20-bits physical
address

29/09/2020 8086 Architecture

https://www.cosc.brocku.ca/~bockusd/3p92/Local_Pages/8086_achitecture.htm 7/9

Also note that the four segments need not be defined separately. Indeed, it is allowable for all four segments to
completely overlap (CS = DS = ES = SS).

Memory locations not defined to be within one of the current segments cannot be accessed by the 8086/88 without
first redefining one of the segment registers to include that location. Thus at any given instant a maximum of 256 K
(64K * 4) bytes of memory can be utilized. As we will see, the contents of the segment registers can only be
specified via S/W. As you might imagine, instructions to load these registers should be among the first given in any
8086/88 program.

LOGICAL AND PHYSICAL ADDRESS

Addresses within a segment can range from address 00000h to address 0FFFFh. This corresponds to the 64K-byte
length of the segment. An address within a segment is called an offset or logical address. A logical address gives the
displacement from the address base of the segment to the desired location within it, as opposed to its "real" address,
which maps directly anywhere into the 1 MB memory space. This "real" address is called the physical address.

What is the difference between the physical and the logical address?

The physical address is 20 bits long and corresponds to the actual binary code output by the BIU on the address bus
lines. The logical address is an offset from location 0 of a given segment.

When two segments overlap it is certainly possible for two different logical addresses to map to the same physical
address. This can have disastrous results when the data begins to overwrite the subroutine stack area, or vice versa.
For this reason you must be very careful when segments are allowed to overlap.

You should also be careful when writing addresses on paper to do so clearly. To specify the logical address XXXX
in the stack segment, use the convention SS:XXXX, which is equal to [SS] * 16 + XXXX.

ADVANTAGES OF SEGMENTED MEMORY

Segmented memory can seem confusing at first. What you must remember is that the program op-codes will be
fetched from the code segment, while program data variables will be stored in the data and extra segments. Stack
operations use registers BP or SP and the stack segment. As we begin writing programs the consequences of these
definitions will become clearer.

An immediate advantage of having separate data and code segments is that one program can work on several
different sets of data. This is done by reloading register DS to point to the new data. Perhaps the greatest advantage

f t d i th t th t f l i l dd l b l d d d h i

11

Organization of 8086 Processor

Instructor: Muhammad Arif Butt, Ph.D.

CS

DS

SS

ES

IP

Memory

EU

BIU

8

Organization of 8086 Processor

Instructor: Muhammad Arif Butt, Ph.D.

CS

DS

SS

ES

IP

SP

BP

SI

DI

AH AL

BH BL

CH CL

DH DL

Memory

ALU

EU

BIU

8

Organization of 8086 Processor

Instructor: Muhammad Arif Butt, Ph.D.

CS

DS

SS

ES

IP

SP

BP

SI

DI

AH AL

BH BL

CH CL

DH DL

Memory

ALU

EU

BIU

6

5

4

3

2

1

Control Unit

8

Organization of 8086 Processor

Instructor: Muhammad Arif Butt, Ph.D.

CS

DS

SS

ES

IP

SP

BP

SI

DI

AH AL

BH BL

CH CL

DH DL

Memory

ALU

EU

BIU

Flags

6 Bytes
Pre-fetch
instruction
queue

AX
BX
CX
DX

CS = 0x3F2A
IP = 0x1B08
CS:IP = 3F2A:1B08
P.A = CS * 1016 + IP
P.A = 3F2A * 10 + 1B08
P.A = 3F2A0 + 1B08 = 40DA8

12Instructor: Muhammad Arif Butt, Ph.D.

Limitation of Intel Segmented Memory Model
• The Intel 8080 assembly programmers were happy as

all their programs were successfully ported to Intel
8086 machines

• The problems began after few years, when
programmers who have never seen the 8080 processor
started to write new programs from scratch for the
8086 processor

• Those programmers actually do not need the
segmented memory model, but have to forcefully use it

• Programs that need to access large data structures,
larger than than 64K of memory at a time had to use
memory in 64K chunks, switching between chunks by
switching values into and out of segment registers

• Hence people say that segmented memory model was a
wise short-term thinking but catastrophically bad long-
term thinking

Segment
Register

0xFFFFF

0x00000

0x80000

64KB Memory
Segment

13

Intel 80386

Instructor: Muhammad Arif Butt, Ph.D.

Characteristics:
• 32-bit data bus

• 32-bit address bus that could address 4 GiB of memory

• Introduced Protected memory
• Introduced the concept of paging and virtual memory

14Instructor: Muhammad Arif Butt, Ph.D.

Memory Model of Intel 80386
• Intel 8086 has an address bus of 20 bits and therefore can address a physical memory of

up to 1 MiB. On the contrary Intel 80386 has an address bus of 32 bits and therefore can
address a physical memory of up to 4 GiB. To ensure portability once again, Intel
introduced Protected mode of memory addressing in 80386 and named the older memory
addressing scheme of 8086 as Real mode
• Real Mode:

o In real mode, irrespective of the total available memory, only first 1 MiB of memory
can be accessed

o To translate a logical address to a physical address segment:offset (CS:IP)
addressing is used (discussed on previous slides)

• Protected Mode:
o This new mode of 80386 allows access to data and programs located above the first

1 MiB of memory (extended memory), as well as within the first 1 MiB of memory
o The segment registers are now considered part of the operating system, you can

neither read nor change them directly. They point to OS data structures that contain
information to access a location

o 32-bit Protected mode supports much larger data structures than Real mode

15Instructor: Muhammad Arif Butt, Ph.D.

Intel 80386: L.A to P.A Translation

CPU
Selector (segment register)

g(1) p(2)S (13)

48 bit LA
16 32

Off set

DTBR

PDBR

+

Descriptor Table

+

Directory Page Offset

10 10 12

Linear Address

+ +

Page Directory Page Table

Frame # Offset
PA

Physical Address

Inner page table contains the
Frame # which is appended with
offset to get the P.A

Page Directory Base
Register contains the Base
address of Page Directory

Contains Base Address
of the specific Inner
page table

Each entry of the Descriptor
Table contains an 8 Byte entry
containing information about
the segment; one of which is
Base Address of the particular
segment.

Physical Memory

0

8192

S(13) used to index into a Descriptor Table
G(1) used to identify the GDT or LDT(s)
P(2) define the privilege level for access or rings of
protection

00 – Private OS functions
01 – OSS services
10 – device drivers
11 – Application programs

Program invisible registers used in
paging unit are CR0 to CR3. If the
leftmost bit of CR0 is 1, paging
mechanism works otherwise, the
linear address generated by the
program becomes the physical
address

16

Register Set: 80386 Processor

Instructor: Muhammad Arif Butt, Ph.D.

AH AL

BH BL

CH CL

DH DL

EAX

General Purpose Registers

EBX

ECX

EDX

ESP

EBP

ESI

EDI

01531

EIP

CS

DS

SS

ES

015

- VM RF - NT IOP1 IOP0 OF DF IF TF SF ZF - AF - PF - CF

31 21 20 19 18 17 16 14 13 12 11 10 9 8 7 6 4 2 0

Flags Register
000000000H

FFFFFFFFFH

Memory

FS

GS

EFLAGS

Instruction Pointer

Segment Registers

AX = AH+AL

BX = BH+BL

CX = CH+CL

DX = DH+DL

0 77 0

17

Intel and AMD x86-64

Instructor: Muhammad Arif Butt, Ph.D.

Characteristics:
• 64 bit data/address bus and 3.8+ GHz
• 16-32 KiB on-chip data and instruction caches
• Super-scalar design with three parallel 12-stages pipeline, so can execute 3 instructions in each clock

cycle
• Supports out of order execution, register renaming, improved branch prediction, and speculative

instruction execution
• Pentium-III was an Intel brand/model based on 80686/P6 architecture, which introduced a new SIMD

technology called Streaming SIMD Extension (SSE)
• Pentium-IV was an Intel brand/model based on 80686/P6 architecture, having a clock support of up to

3.8+ GHZ and support of hyper-threading technology

18Instructor: Muhammad Arif Butt, Ph.D.

Memory Model of x86-64
• The x86-64 architecture defines three general modes: real mode, protected mode,

and long mode

• Real Mode is a compatibility mode that enables the CPU to run older real-
mode operating systems and software like DOS and Windows 3.1. In real mode
the x86-64 CPU works just like an 8086, and supports real mode flat model and
real mode segmented model

• Protected Mode is also a compatibility mode that enables the CPU to run older
operating systems like Windows 2000/XP/Vista/7 and their applications. In
protected mode the x86-64 CPU works just like an 80386

• Long Mode is a true 64-bit mode; and when the x86-64 CPU is in long mode,
all registers are 64 bits wide, and all machine instructions that act on 64-bit
operands are available. All 80386 registers are available, rather extended to 64
bits in width

19Instructor: Muhammad Arif Butt, Ph.D.

Memory Model of x86-64
• The layout of various segments of a process running on a

Linux system is shown

• The x86-64 CPU chips that you can buy today implement
48 bit logical address for virtual memory (as shown), and
40 bits for physical memory

• The 64 bit Logical address can be broken down as:

Stack

Heap
Un-Initialized Data

(.bss)

Initialized Data
(.data)

Code
(.text)

0x0 (48 bits L.A)

0x7FFFFFFFFFFF
(131 TiB)

63 -48 47 39 38 -30 29 - 21 20 - 12 11 - 0

Unused PML4 index Page directory
pointer index

Page directory
index

Page table
index Page offset

0x400000

20

Register Set: x86-64 Processor

Instructor: Muhammad Arif Butt, Ph.D.

64-bit
register

Lowest 32-
bits

Lowest
16-bits

Lowest
8-bits

r0/rax eax ax al

r1/rbx ebx bx bl

r2/rcx ecx cx cl

r3/rdx edx dx dl

r4/rsi esi si sil

r5/rdi edi di dil

r6/rbp ebp bp bpl

r7/rsp esp sp spl

r8 r8d r8w r8b

r9 r8d r9w r9b

r10 r10d r10w r10b

r11 r11d r11w r11b

r12 r12d r12w r12b

r13 r13d r13w r13b

r14 r14d r14w r14b

r15 r15d r15w r15b

General Purpose Registers

EIP
063

RIP

ymm0 xmm0

ymm1 xmm1

ymm2 xmm2

ymm3 xmm3

ymm14 xmm14

ymm15 xmm15

0127

SSE Media Registers

255 240 - 1

Memory

0

- ID VIP VIF AC VM RF - NT IOP1 IOP0 OF DF IF TF SF ZF - AF - PF - CF

63 21 20 19 18 17 16 14 13 12 11 10 9 8 7 6 4 2 0
RFLAGS

CS

DS

SS

ES

FS

GS

015

Segment Registers

21

Things To Do

Instructor: Muhammad Arif Butt, Ph.D.

Coming to office hours does NOT mean you are academically week!

