
Lecture # 31
Debugging C Programs with GDB

Computer Organization & Assembly Language Programming

#include<stdio.h>
#include<stdlib.h>
int main(){
printf("Learning is fun with Arif\n");
exit(0);

}

 global main
SECTION .data

msg: db "Learning is fun with Arif", 0Ah, 0h
len_msg: equ $ - msg

SECTION .text
main:

mov rax,1
mov rdi,1
mov rsi,msg
mov rdx,len_msg
syscall
mov rax,60
mov rdi,0
syscall

0: b8 01 00 00 00
5: bf 01 00 00 00
a: 48 be 00 00 00 00 00
11: 00 00 00
14: ba 1b 00 00 00
19: 0f 05
1b: b8 3c 00 00 00
20: bf 00 00 00 00
25: 0f 05

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	5 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	25

Solution: multiplex, using an instruction register

program

Memory

data

ALU

instruction	
register

data	
address

fetch /
execute
bit

mux

instruction

instruction	
address

Memory	
address	

input	

control	bus

address	bus

Memory	
output

address	bus (data	flows	not	shown,	to	minimize	clutter)

load	
on	
fetch

instruction

data

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	1 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	33

Interactive simulation (using Xor as an example)

Simulation process:
• Load the HDL file into the hardware simulator
• Enter values (0’s and 1’s) into the chip’s input pins (e.g. a and b)
• Evaluate the chip’s logic
• Inspect the resulting values of:

q Output pins (e.g. out)
q Internal pins (e.g. nota, notb, aAndNotb, notaAndb)

a

Not

Not

And

And

Or

b

out
nota

notb aAndNotb

notaAndb

Xor.hdl
CHIP Xor {

IN a, b;
OUT out;

PARTS:
Not (in=a, out=nota);
Not (in=b, out=notb);
And (a=a, b=notb, out=aAndNotb);
And (a=nota, b=b, out=notaAndb);
Or (a=aAndNotb, b=notaAndb, out=out);

}

CHIP Xor {
IN a, b;
OUT out;
PARTS:
Not(in=a, out=nota);
Not(in=b, out=notb);
And(a=nota, b=b, out=w1);
And(a=a, b=notb, out=w2);
Or(a=w1, b=w2, out=out);

}

Instructor: Muhammad Arif Butt, Ph.D.

For resources visit my personal website:
https://www.arifbutt.me
and course bitbucket repository:
https://bitbucket.org/arifpucit/coal-repo

• Review of C compilation process
• What is debugging and what is a debugger?
• Compiling, loading & running a program in GDB
• Getting information about running process
• Demo
• Getting help and listing your source
• Setting breakpoints / watchpoints
• Stepping through your code
• Examining / Modifying variables
• Convenience variables
• Setting conditional breakpoints
• Demo
• gdb Text User Interface
• Demo

2

Today’s Agenda

Instructor: Muhammad Arif Butt, Ph.D.

https://sourceware.org/gdb/onlinedocs/gdb/index.html#SEC_Contents

3Instructor: Muhammad Arif Butt, Ph.D.

Source Code File(s)
hello.c

Processed Code File(s)
hello.i

Assembly Code File(s)
hello.s

Object Code File(s)
hello.o

Executable File
a.out

$ gcc –E hello.c 1> hello.i

$ gcc –S hello.i

$ gcc –c hello.s

$gcc --static –c hello.o -lc

Interpret preprocessor directives, Include
header files, Expand macros, Remove
comments

Checks for syntax errors, Converts source
code to assembly code of underlying
processor

Generates relocatable object files to be
used by linker, Contains symbol table

Preprocessor (cpp)

Compiler (cc)

Assembler (as/yasm)

Linker (ld)
Static vs Dynamic linking, Contains code
and data for all functions defined in src
files, Contains global symbol table

Stored on hard disk
in ELF format

Static Library
(.a)

Loader
Dynamic Library

(.so)

Logical Process Address
Space in memory

$ gcc –save-temps hello.c

Review of C-Compilation Process

$./a.out

4

What is Debugging?

Instructor: Muhammad Arif Butt, Ph.D.

• Debugging is the science and art of finding and eliminating bugs in a computer program
• A debugger is a program running another program
• Using a debugger, a programmer can

• Start a program, specifying anything that might affect its behavior
• Make a program stop on specified conditions
• Examine what has happened, when a program has stopped
• Change things in a program, so you can experiment with correcting the effects of one

bug and go on to learn about another
• Some Famous Debuggers:

• GDB (PEDA plug-in)
• Radare2
• Intel Debugger
• SoftIce
• Immunity Debugger
• Strace

5

What is GDB?

Instructor: Muhammad Arif Butt, Ph.D.

• GDB, the GNU Project debugger, allows you to see what is going on inside another
program while it executes -- or what another program was doing at the moment it crashed

• The programs being debugged might be executing on the same machine as GDB (native),
on another machine (remote), or on a simulator

• GDB is a portable debugger that can run on most popular UNIX and Microsoft Windows
variants, as well as on Mac OS X

• The target processors include IA-32, x86-64, alpha, arm, mips, powerpc, sparc and many
others

• GDB works for many programming languages including Assembly, C/C++, Objective C,
OpenCL, Go, Modula-2, Fortran, Pascal and Ada

• Programmers use GDB for following tasks:
Ø Run time analysis of binaries
Ø Manipulating program flow
Ø Disassembly
Ø Reverse Engineering and cracking binaries

Note: GDB is too good a debugger, however, it lacks intuitive interface, do not have a smart context display, do not have
commands for exploit development, and has weak scripting support. To use GDB for exploit development one can use
PEDA plugin (Python Exploit Development Assistance)

6

GUI Interfaces of GDB

Instructor: Muhammad Arif Butt, Ph.D.

• Although for learning purpose we will be using command line interface of gdb, however
there are many GUI interfaces of GDB like:
• Data Display Debugger
• Nemiver

• Following IDEs also use gdb at their back end:
• Xcode
• Visual Studio
• Code::Blocks
• Dev C++
• Eclipse
• NetBeans

7

Compiling, Loading and Running Program with GDB

Instructor: Muhammad Arif Butt, Ph.D.

• In order to load and properly analyze a program in gdb you need to compile it with –g or
–ggdb option. This is done to instruct the compiler to keep debugging symbols in the
object files

$ gcc --ggdb -c myadd.c mysub.c driver.c
$ gcc myadd.o mysub.o driver.o –o myexe

• There are two ways to load a program myexe in gdb :
$ gdb
(gdb) file myexe

• Once gdb is running and has a program loaded, you can set command line arguments:
(gdb)set args arg1 arg2 …

• Once gdb is running and has a program loaded, you can run the program:
(gdb)run [arg1 arg2 …]

• To load an already running program in gdb (need to be sudo) :
$ sudo gdb attach <pid> OR (gdb)attach <pid>

$ gdb myexe

8

Getting Info about the Running Process

Instructor: Muhammad Arif Butt, Ph.D.

• Once a program loaded inside gdb, you can use the following command to display the
name of all the source files from which symbols have been read in

(gdb)info sources
• Once a program loaded inside gdb, you can use the following command to display the

name of all the functions (user defined & library functions)
(gdb)info functions

• Once a program loaded inside gdb, you can use the following command to display the
name of all the global variables

(gdb)info variables
• Once a program loaded inside gdb, you can use the following command to display the

name of all the local variables inside a specific function
(gdb)info scope function-name

• Once a program running inside gdb, you can use the following command to display the
name of all the local variables inside the active frame

(gdb)info locals

9

Demo

Instructor: Muhammad Arif Butt, Ph.D.

A Hello World with
GDB

31/ex1/

10

Getting Help in GDB

Instructor: Muhammad Arif Butt, Ph.D.

• To get the listing of twelve different classes in which gdb commands are categorized,
give the following command
(gdb) help

 List of classes of commands:
aliases -- Aliases of other commands.
breakpoints -- Making program stop at certain points.

data -- Examining data.
files -- Specifying and examining files.
internals -- Maintenance commands.
obscure -- Obscure features.
running -- Running the program.

stack -- Examining the stack.
status -- Status inquiries.
support -- Support facilities.
tracepoints -- Tracing of program execution without stopping the program.
user-defined -- User-defined commands.

• To get list of commands inside a class: (gdb)help <classname>
• To get detailed help about a specific command: (gdb)help <command>

11

Listing Your Source Code inside GDB

Instructor: Muhammad Arif Butt, Ph.D.

• The list command of gdb is used to display the source code (provided if the source
file is there in the pwd)

• Following command will display 10 lines after or around previous listing
Ø (gdb) list

• Following command will display 10 lines around the given line number
Ø (gdb) list file:<line#>

• Following command will display lines between the two line numbers (both inclusive)
Ø (gdb) list file:<line#> , file:<line#>

• Following command will display lines around the given function name
Ø (gdb) list file:<function_name>

• To change the default display of 10 lines, use following command
Ø (gdb) set listsize <newssize>

12

Setting Break Points

Instructor: Muhammad Arif Butt, Ph.D.

• Breakpoint is the place (LOC) in your program where you want to stop the execution of
your program. Once a breakpoint is hit during execution of a program, you can
inspect/modify contents of variables, CPU registers as well as different memory
addresses. You can set as many break points as you feel like

• You can set a break point mentioning line#, function name, or by virtual address
Ø (gdb) break prog1.c:line#
Ø (gdb) break prog1.c:function_name
Ø (gdb) break prog1.c:*0x2ff5bbcc2100

• You can get information about existing break points, already set in your program
Ø (gdb) info break
Num Type Disp Enb Address What
1 breakpoint keep y 0x0000000000001154 in main at factorial.c:5
2 breakpoint keep y 0x0000000000001184 in main at factorial.c:8

• You can enable/disable/delete/clear break points, already set in your program
Ø (gdb) disable <breakpoint#>
Ø (gdb) enable <breakpoint#>
Ø (gdb) delete <breakpoint#>
Ø (gdb) clear <breakpoint#>

13

Setting Watch Points

Instructor: Muhammad Arif Butt, Ph.D.

• A breakpoint stops the execution of a program at a specific location; watchpoint acts on
variables

• Following gdb command will set a watch on variable named var-name; whenever the
value of this variable will change, gdb will interrupt the program and print out the old
and the new value
Ø (gdb) watch <var-name>

• You can get information about existing break points, already set in your program
Ø (gdb) info watch
Num Type Disp Enb Address What
2 hw watchpoint keep y var-name

• You can enable/disable/delete/clear watchpoints, as you can do with breakpoints
Ø (gdb) disable <watchpoint#>
Ø (gdb) disable <watchpoint#>
Ø (gdb) enable <watchpoint#>
Ø (gdb) delete <watchpoint#>
Ø (gdb) clear <watchpoint#>

14

Stepping Through Your Code

Instructor: Muhammad Arif Butt, Ph.D.

Once a breakpoint is hit, you can do either of the following:
• Continue execution till next breakpoint or end of program

Ø (gdb) continue / c / ci
• Execute and move to next instruction, but don’t dive into functions

Ø (gdb) next / n / ni
• Execute and move to next instruction by diving into functions

Ø (gdb) step / s / si
• Continue until the current function returns

Ø (gdb) finish

15

Displaying and Modifying Values of Variables

Instructor: Muhammad Arif Butt, Ph.D.

Once a breakpoint is hit during execution of a program, you can inspect/modify contents of
variables, CPU registers as well as different memory addresses
• The print command is the most common command to check the contents of variables

in the specified format. (Table shows the format characters)
Ø (gdb) print /format-char <var-name>

• The whatis command is used to check the type of a variable
Ø (gdb) whatis <var-name>

• The set command is used to modify the value of a variable
Ø (gdb) set variable <var-name> = <value>

• Unlike print the display command is used to display the value of a variable each
time the program stops
Ø (gdb) display <var-name>

• You can get information about existing displayed variables
Ø (gdb) info display
Num Enb Expression
2 y var-name

• You can enable/disable/undisplay an already displayed variable
Ø (gdb) enable/disable display <display#>
Ø (gdb) undisplay <display#>

d Integer, signed decimal

u Integer, un-signed decimal

x Integer, print as hex

o Integer, print as octal

t Integer, print as binary

f Floating point number

c Read as int, print as char

s Treat as C-string

a Address

16

Convenience Variables in GDB

Instructor: Muhammad Arif Butt, Ph.D.

• GDB provides convenience variables that you can use within GDB to hold on to a value
and refer to it later. These variables exist entirely within GDB; they are not part of your
program, and setting a convenience variable has no direct effect on further execution of
your program
Ø (gdb) set $i = 15
Ø (gdb) print $i

$1 = 15

Ø (gdb) set $name = “Arif Butt”
Ø (gdb) print $name

$2 = “Arif Butt”

• You can call library functions that are linked with the running process inside gdb
Ø (gdb) call strcpy($msg, “Hello World”)
Ø (gdb) print $msg

$2 = “Hello World”

• You can call user defined functions in a similar fashion, (once the process is running)
Ø (gdb) call myadd(25, 34)

$3 = 59

Ø (gdb) set $i = 100
Ø (gdb) call myadd($i, $j)

$4 = 125

Ø (gdb) set $j = 25

17

Setting Conditional Break Points

Instructor: Muhammad Arif Butt, Ph.D.

• A conditional break point is similar to a
breakpoint that is set if the condition is
met

4. int main(int argc, char* argv[]){
5. for(int ctr=0; ctr<=10; ctr++)
6. printf("The value of ctr is %d \n", ctr);
7. return 0;
8. }

• (gdb) break <line#> if <condition>
• Consider the code snippet, in which we want to put a break when the value of the

variable ctr value reaches 5. Place a breakpoint at the printf instruction
Ø (gdb) break 6 if ctr == 5

• Get information about existing break point
Ø (gdb) info break
Num Type Disp Enb Address What
1 breakpoint keep y 0x000000000000114d in main at cond_bp.c:6

stop only if ctr == 5

• Now run the program, it will stop only when the condition is met
Ø (gdb) run
Ø (gdb) print ctr

$1 = 5

18

Demo

Instructor: Muhammad Arif Butt, Ph.D.

Use of
Breakpoints,

watchpoints, stepping,
displaying and modifying

31/ex2/fact.c

19

Text User Interface of gdb

Instructor: Muhammad Arif Butt, Ph.D.

• The gdb Text User Interface, TUI in short, is a terminal interface which uses
the curses library to show the source file, the assembly output, the program registers and
gdb commands in separate text windows

• To run gdb in tui mode give following command
$ gdb –q -tui

• If gdb is already running, you can switch from simple command mode to tui mode by
giving following command
Ø (gdb) tui enable/disable

• In TUI mode, gdb can display several text windows:
o Command Window: Displays the gdb prompt to get the commands and also

displays the GDB output
o Source Window: Displays the source file of the program along with current line and

active breakpoints. The current line is shown with > marker and active breakpoints
are shown with * marker

o Assembly Window: Displays the disassembly of the program
o Register Window: Displays the processor registers. Registers are highlighted when

their values change

20

Layouts of Text User Interface of gdb

Instructor: Muhammad Arif Butt, Ph.D.

• Layout means which TUI windows are displayed. There are different layout, some are
mentioned below:
o Source Only

Ø (gdb) layout src
o Assembly Only

Ø (gdb) layout asm
o Source and Assembly

Ø (gdb) layout split
o Registers

Ø (gdb) layout regs
• To change the register group displayed in the tui register window, you can use the

following command
Ø (gdb) tui reg general/float/vector/all

• To move the focus to any window for scrolling, use the following command
Ø (gdb) focus src/asm/regs/cmd

21

Demo

Instructor: Muhammad Arif Butt, Ph.D.

Use of
Text User Interface

31/ex2/

https://sourceware.org/gdb/onlinedocs/gdb/TUI.html

22

Bonus

Instructor: Muhammad Arif Butt, Ph.D.

23

Installing GDB and other ToolChain

Instructor: Muhammad Arif Butt, Ph.D.

• The set of programming tools used to create a binary executable is referred to as the tool
chain (Compiler, Assembler, Linker, Loader, Debugger). Some GNU Tool Chains are gcc,
glibc, binutils, bison, m4, gdb, make, cmake, autoconf, automake, …

• In this part of the course there are number of different tools that are required to be installed.
If you are using Debian based Linux you can confirm the availability of following tools or
packages by giving the following commands on your terminal:

$ sudo apt-get install binutils
$ sudo apt-get install build-essential
$ sudo apt-get install gcc make cmake gdb nasm
$ sudo apt-get install libglib2.0-dev
$ sudo apt-get install valgrind electric-fence
$ sudo apt-get install bison

24

Loading Multiple Processes in GDB

Instructor: Muhammad Arif Butt, Ph.D.

• GDB let you load multiple programs in a single session and switch focus between them
• GDB represents the state of each program executing with an object called inferior
• You can load multiple binaries in gdb using following command:

$ gdb
(gdb) add-inferior –exec myexe1
(gdb) add-inferior –exec myexe2

• To get information about different loaded processes inside gdb:
(gdb)info inferiors

• To switch focus from one program to another:
(gdb)inferior <inferior#>

ToDo:
Use gdb to execute/debug multiple processes simultaneously, which are communicating with each
other via different IPC mechanisms

25

Static Analysis of a Program

Instructor: Muhammad Arif Butt, Ph.D.

• With poorly coded programs a hacker can use tools like strings and nm to reveal
private/secret information and crack it
$ strings <binary_file>
$ nm <binary_file>

• So a smart developer never ships his program with debugging symbols as it is a security
loop hole and let a hacker analyze and exploit your program and perform reverse
engineering
Ø Make a copy of debugging symbols in another file
$ objcopy --only-keep-debug <binary_file> <symbol_file>
Ø Now strip all symbols from the binary file
$ strip --strip-debug --strip-unneeded <binary_file>
Ø If you have a binary_file w/o debug symbols and the symbol_file containing debug

symbols you can merge them with following command:
$ objcopy --add-gnu-debuglink=<symbol_file> <binary_file>

26

Postmortem of a Dead Process

Instructor: Muhammad Arif Butt, Ph.D.

• Whenever a process abnormally terminates on receipt of a signal (SIGFPE, SIGSEGV,
SIGQUIT)from operating system, Linux creates a core file which is a binary image of
the process at the time of its death

• In most OS configurations the generation of core file is disabled. To enable it on Linux,
give the following command:

$ ulimit –c unlimited
• The program code once executed will give a Floating point exception with core dumped
• You can load the core dump file along with the program in gdb to investigate the reason

of process death
$ gdb myexe corefile

int main()
{
int i = 7,j = 0;
float f = i/j;
printf("%d/%d=%.2f\n",i,j,f);
return 0;

}

27

Things To Do

Instructor: Muhammad Arif Butt, Ph.D.

