
Lecture # 37
Logical Operations

Computer Organization & Assembly Language Programming

#include<stdio.h>
#include<stdlib.h>
int main(){
printf("Learning is fun with Arif\n");
exit(0);

}

 global main
SECTION .data

msg: db "Learning is fun with Arif", 0Ah, 0h
len_msg: equ $ - msg

SECTION .text
main:

mov rax,1
mov rdi,1
mov rsi,msg
mov rdx,len_msg
syscall
mov rax,60
mov rdi,0
syscall

0: b8 01 00 00 00
5: bf 01 00 00 00
a: 48 be 00 00 00 00 00
11: 00 00 00
14: ba 1b 00 00 00
19: 0f 05
1b: b8 3c 00 00 00
20: bf 00 00 00 00
25: 0f 05

Instructor: Muhammad Arif Butt, Ph.D.

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	5 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	25

Solution: multiplex, using an instruction register

program

Memory

data

ALU

instruction	
register

data	
address

fetch /
execute
bit

mux

instruction

instruction	
address

Memory	
address	

input	

control	bus

address	bus

Memory	
output

address	bus (data	flows	not	shown,	to	minimize	clutter)

load	
on	
fetch

instruction

data

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	1 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	33

Interactive simulation (using Xor as an example)

Simulation process:
• Load the HDL file into the hardware simulator
• Enter values (0’s and 1’s) into the chip’s input pins (e.g. a and b)
• Evaluate the chip’s logic
• Inspect the resulting values of:

q Output pins (e.g. out)
q Internal pins (e.g. nota, notb, aAndNotb, notaAndb)

a

Not

Not

And

And

Or

b

out
nota

notb aAndNotb

notaAndb

Xor.hdl
CHIP Xor {

IN a, b;
OUT out;

PARTS:
Not (in=a, out=nota);
Not (in=b, out=notb);
And (a=a, b=notb, out=aAndNotb);
And (a=nota, b=b, out=notaAndb);
Or (a=aAndNotb, b=notaAndb, out=out);

}

CHIP Xor {
IN a, b;
OUT out;
PARTS:
Not(in=a, out=nota);
Not(in=b, out=notb);
And(a=nota, b=b, out=w1);
And(a=a, b=notb, out=w2);
Or(a=w1, b=w2, out=out);

}

@R1
D=M
@temp
M=D

0000000000000001
1111110000010000
0000000000010000
1110001100001000

For resources visit my personal website:
https://www.arifbutt.me
and course bitbucket repository:
https://bitbucket.org/arifpucit/coal-repo

• Recap: x86-64 Registers, Tool Chain & Instructions
• Logical Instructions
– AND

– OR

– NOT

– XOR

– TEST

• Demo (logical.nasm)

2

Today’s Agenda

Instructor: Muhammad Arif Butt, Ph.D.

3

Recap

Instructor: Muhammad Arif Butt, Ph.D.

4

Review: x86-64 Register Set

Instructor: Muhammad Arif Butt, Ph.D.

64-bit
register

Lowest 32-
bits

Lowest
16-bits

Lowest
8-bits

r0/rax eax ax al

r1/rbx ebx bx bl

r2/rcx ecx cx cl

r3/rdx edx dx dl

r4/rsi esi si sil

r5/rdi edi di dil

r6/rbp ebp bp bpl

r7/rsp esp sp spl

r8 r8d r8w r8b

r9 r9d r9w r9b

r10 r10d r10w r10b

r11 r11d r11w r11b

r12 r12d r12w r12b

r13 r13d r13w r13b

r14 r14d r14w r14b

r15 r15d r15w r15b

General Purpose Registers

EIP
063

RIP

SSE Media Registers

240 - 1

Memory

0

- ID VIP VIF AC VM RF - NT IOP1 IOP0 OF DF IF TF SF ZF - AF - PF - CF

63 21 20 19 18 17 16 14 13 12 11 10 9 8 7 6 4 2 0
RFLAGS

CS

DS

SS

ES

FS

GS

015

Segment Registers

ST0

ST1

ST2

.

.

.

ST7

079

FP Registers

0255511

zmm0 ymm0 xmm0

zmm1 ymm1 xmm1

zmm2 ymm2 xmm2

zmm3 ymm3 xmm3

zmm14 ymm14 xmm14

zmm15 ymm15 xmm15

127

5Instructor: Muhammad Arif Butt, Ph.D.

10001000
01000001
1000101001001001
0101011000011111
0001010011110000
10001000
01001101
10001000
01001001
1000101001001000
0101011000011000
0001010010010001
10001010
01001011

myexe
; COAL Video Lecture: 30
; Programmer: Arif Butt
; first.nasm
SECTION .data

msg db "Learning…", 0xA
EXIT_STATUS equ 54

 SECTION .bss
;nothing here
SECTION .text

global _start
_start:

;display a message on screen
mov rax,1
mov rdi,1
mov rsi,msg
mov rdx,26
syscall

;exit the program
mov rax,60
mov rdi, EXIT_STATUS
syscall

first.nasm

$ nasm –felf64 first.nasm
$ ld first.o –o myexe
$./myexe
Learning is fun with Arif

1000101001001001
0101011000011111
0001010011110000
10001000
01001101
10001000
10001000
01000001
0101011000011111
0001010011110000
10001000
1000101001001000
0001010010010001
10001010
01001011
0001010011110000
10001000
01001101
10001000

Assemble first.o Link

Review: x86-64 Tool Chain
Load & Execute

4Instructor: Muhammad Arif Butt, Ph.D.

Memory Model of x86-64
• The layout of various segments of a process running on a

Linux system is shown

• The x86-64 CPU chips that you can buy today implement
48 bit logical address for virtual memory (as shown), and
40 bits for physical memory

• The 64 bit Logical address can be broken down as:

Stack

Heap
Un-Initialized Data

(.bss)

Initialized Data
(.data)

Code
(.text)

0x0 (48 bits L.A)

0x7FFFFFFFFFFF
(131 TiB)

63 -48 47 39 38 -30 29 - 21 20 - 12 11 - 0

Unused PML4 index Page directory
pointer index

Page directory
index

Page table
index Page offset

0x400000

6

Review: Categories of x86-64 Instructions

Instructor: Muhammad Arif Butt, Ph.D.

Category Description Examples
Data Transfer Move from source to

destination
mov, movzx, movsx, lea, lds, lss, xchg,
push, pop, pusha, popa, pushf, popf

Arithmetic Arithmetic on integer add, addc, sub, subb, mul, imul, div,
idiv, neg, inc, dec, cmp

Bit Manipulation Logical & bit shifting
operations

and, or, not, xor, test, shl/sal, shr,
sar, ror, rol, rcr, rcl

Control Transfer Conditional and
unconditional jumps,
and procedure calls

jmp
jcc(jz,jnz,jg,jge,jl,jle,jc,jnc,...)
call, ret

String Move, compare, input
and output

movsb, movsw, lodsb, lodsw, stosb,
stosw, rep, repz, repe, repnz, repne

Floating Point Arithmetic fld, fst, fstp, fadd, fsub, fmul, fdiv

Conversion Data type conversions cbw, cwd, cdq, xlat

Input Output For input and output in, out

Miscellaneous Manipulate individual
flags

clc, stc, cld, std, sti

7

Logical Operations

Instructor: Muhammad Arif Butt, Ph.D.

8

Bitwise AND Instruction

Instructor: Muhammad Arif Butt, Ph.D.

AND
• Format: AND dest, source
• Operation: Destination = Source & Destination
• Operands: Destination operand can be a reg/mem

Source operand can be an imm/reg/mem
• Flags Affected: The OF and CF flags are cleared; the SF, ZF, and PF flags

are set according to the result. The state of the AF flag is undefined
• Usage: Used to clear specific bits while preserving the others. A zero mask

bit clears the corresponding bits, while a one mask bit preserves the
corresponding bits

• Example 1:
• To check whether a given number in AL register is even or odd

MOV al, 27d ;0001 1011
AND al, 01h ;0000 0001

;AL = 0000 0001 = 1(odd)

MOV al, 26d ;0001 1010
AND al, 01h ;0000 0001

;AL = 0000 0000 = 0(even)

9Instructor: Muhammad Arif Butt, Ph.D.

AND
• Format: AND dest, source
• Operation: Destination = Source & Destination
• Operands: Destination operand can be a reg/mem

Source operand can be an imm/reg/mem
• Flags Affected: The OF and CF flags are cleared; the SF, ZF, and PF flags

are set according to the result. The state of the AF flag is undefined
• Usage: Used to clear specific bits while preserving the others. A zero mask

bit clears the corresponding bits, while a one mask bit preserves the
corresponding bits

• Example 2:
• To clear the higher order bits of AX register to zero

MOV ax, 5bh ;0101 1011
AND ax, 0Fh ;0000 1111

;AL = 0000 1011 = 0bh

Bitwise AND Instruction (cont…)

10Instructor: Muhammad Arif Butt, Ph.D.

AND
• Format: AND dest, source
• Operation: Destination = Source & Destination
• Operands: Destination operand can be a reg/mem

Source operand can be an imm/reg/mem
• Flags Affected: The OF and CF flags are cleared; the SF, ZF, and PF flags

are set according to the result. The state of the AF flag is undefined
• Usage: Used to clear specific bits while preserving the others. A zero mask

bit clears the corresponding bits, while a one mask bit preserves the
corresponding bits

• Example 3:
• To clear the sign bit of a number in AL register, leaving the other bits

unchanged
MOV al, -5d ;1111 1011
AND al, 7fh ;0111 1111

AL = 0111 1011

Bitwise AND Instruction (cont…)

11Instructor: Muhammad Arif Butt, Ph.D.

AND
• Format: AND dest, source
• Operation: Destination = Source & Destination
• Operands: Destination operand can be a reg/mem

Source operand can be an imm/reg/mem
• Flags Affected: The OF and CF flags are cleared; the SF, ZF, and PF flags

are set according to the result. The state of the AF flag is undefined
• Usage: Used to clear specific bits while preserving the others. A zero mask

bit clears the corresponding bits, while a one mask bit preserves the
corresponding bits

• Example 4:
• To clear the even number of bits of a register, leaving the other bits

unchanged
MOV al, 27d ;0001 1011
AND al, aah ;1010 1010

AL = 0000 1010

Bitwise AND Instruction (cont…)

12Instructor: Muhammad Arif Butt, Ph.D.

AND
• Format: AND dest, source
• Operation: Destination = Source & Destination
• Operands: Destination operand can be a reg/mem

Source operand can be an imm/reg/mem
• Flags Affected: The OF and CF flags are cleared; the SF, ZF, and PF flags

are set according to the result. The state of the AF flag is undefined
• Usage: Used to clear specific bits while preserving the others. A zero mask

bit clears the corresponding bits, while a one mask bit preserves the
corresponding bits

• Example 5:
• Suppose AL register contains the ASCII code of a lower case alphabet,

convert it to upper case
MOV al, 61h ; 0110 0001 (97d or ‘a’)
AND al, dfh ; 1101 1111

;AL = 0100 0001 (65d or ‘A’)

Bitwise AND Instruction (cont…)

13Instructor: Muhammad Arif Butt, Ph.D.

AND
• Format: AND dest, source
• Operation: Destination = Source & Destination
• Operands: Destination operand can be a reg/mem

Source operand can be an imm/reg/mem
• Flags Affected: The OF and CF flags are cleared; the SF, ZF, and PF flags

are set according to the result. The state of the AF flag is undefined
• Usage: Used to clear specific bits while preserving the others. A zero mask

bit clears the corresponding bits, while a one mask bit preserves the
corresponding bits

• Example 6:
• Suppose AL register contain a ASCII code of a decimal digit, convert

it to decimal number (atoi)
MOV al, 32h ; 0011 0010 (50d)
AND al, 0fh ; 0000 1111

;AL = 0000 0010 (2d)

Bitwise AND Instruction (cont…)

14Instructor: Muhammad Arif Butt, Ph.D.

OR
• Format: AND dest, source
• Operation: Destination = Source | Destination
• Operands: Destination operand can be a reg/mem

Source operand can be an imm/reg/mem
• Flags Affected: The OF and CF flags are cleared; the SF, ZF, and PF flags

are set according to the result. The state of the AF flag is undefined
• Usage: Used to set specific bits while preserving the others. A one mask

bit sets the corresponding bits, while a zero mask bit preserves the
corresponding bits

• Example 1:
• To set the most and the least significant bits of a number, leaving the

other bits unchanged, OR the number with 81h (for 8 bit number)
MOV al, 72h ;0111 0010
AND al, 81h ;1000 0001

AL = 1111 0011

Bitwise OR Instruction

15Instructor: Muhammad Arif Butt, Ph.D.

OR
• Format: AND dest, source
• Operation: Destination = Source | Destination
• Operands: Destination operand can be a reg/mem

Source operand can be an imm/reg/mem
• Flags Affected: The OF and CF flags are cleared; the SF, ZF, and PF flags

are set according to the result. The state of the AF flag is undefined
• Usage: Used to set specific bits while preserving the others. A one mask

bit sets the corresponding bits, while a zero mask bit preserves the
corresponding bits

• Example 2:
• Suppose AL register contain a upper case alphabet, convert it to lower

case

Bitwise OR Instruction (cont…)

MOV al, 5ah ; 0101 1010 (90d or ‘Z’)
OR al, 20h ; 0010 0000

;AL = 0111 1010 (7ah or 122d or ‘z’)

16Instructor: Muhammad Arif Butt, Ph.D.

OR
• Format: AND dest, source
• Operation: Destination = Source | Destination
• Operands: Destination operand can be a reg/mem

Source operand can be an imm/reg/mem
• Flags Affected: The OF and CF flags are cleared; the SF, ZF, and PF flags

are set according to the result. The state of the AF flag is undefined
• Usage: Used to set specific bits while preserving the others. A one mask

bit sets the corresponding bits, while a zero mask bit preserves the
corresponding bits

• Example 3:
• Suppose AL register contain a decimal digit, covert it to its

corresponding ASCII code (itoa)

Bitwise OR Instruction (cont…)

MOV al, 5d ; 0000 0101
OR al, 30h ; 0011 0000

;AL = 0011 0101 (53d)

17Instructor: Muhammad Arif Butt, Ph.D.

NOT
• Format: NOT dest
• Operation: : Destination = ~ Destination
• Operands: Destination operand can be a reg/mem
• Flags Affected: The OF and CF flags are cleared; the SF, ZF, and PF flags

are set according to the result. The state of the AF flag is undefined
• Usage: Used to perform 1’s complement
• Example:

• Calculate the 1s complement of a number

MOV al, 72h ;0111 0010
NOT al

; AL = 1000 1101 (141 if unsigned, else -115)

Bitwise NOT Instruction

18Instructor: Muhammad Arif Butt, Ph.D.

XOR
• Format: XOR dest, source
• Operation: : Destination = Source ^ Destination
• Operands: Destination operand can be a reg/mem

Source operand can be an imm/reg/mem
• Flags Affected: The OF and CF flags are cleared; the SF, ZF, and PF flags

are set according to the result. The state of the AF flag is undefined
• Usage: Used to complement specific bits, while preserving the others. A

one mask bit complements the corresponding bits, while a zero mask bit
preserves the corresponding bits

• Example 1:
• To clear the entire register bits to zero, XOR the register with itself

Bitwise XOR Instruction (cont…)

MOV al, 42h ; 0100 0010
XOR al, al ; 0100 0010

;AL = 0000 0000

19Instructor: Muhammad Arif Butt, Ph.D.

XOR
• Format: XOR dest, source
• Operation: : Destination = Source ^ Destination
• Operands: Destination operand can be a reg/mem

Source operand can be an imm/reg/mem
• Flags Affected: The OF and CF flags are cleared; the SF, ZF, and PF flags

are set according to the result. The state of the AF flag is undefined
• Usage: Used to complement specific bits, while preserving the others. A

one mask bit complements the corresponding bits, while a zero mask bit
preserves the corresponding bits

• Example 2:
• To convert upper case alphabet to lower case alphabet and vice versa

Bitwise XOR Instruction (cont…)

MOV al, 66d ;0100 0010 (‘B’)
XOR al, 20h ;0010 0000

;AL = 0110 0010 (‘b’)

MOV al, 98d ;0110 0010 (‘b’)
XOR al, 20h ;0010 0000

;AL = 0100 0010 (‘B’)

20Instructor: Muhammad Arif Butt, Ph.D.

TEST
• Format: TEST operand1, operand2
• Operation: : Perform bitwise AND of operand1 and operand2
• Operands: Operand1 can be a reg/mem

Operand2 can be an imm/reg
• Flags Affected: The OF and CF flags are cleared; the SF, ZF, and PF flags

are set according to the result. The state of the AF flag is undefined
• Usage: Used to test whether bit(s) in the first operand is/are having a value

of 1. Mask should contain one in the bit positions to be tested and zero
elsewhere

• Example 1: To check if AL contains a positive or negative number

Bitwise TEST Instruction

MOV al, 5d ; 0000 0101
TEST al, 80h ; 1000 0000

;ZF = 1

MOV al, -5d ; 1111 1011
TEST al, 80h ; 1000 0000

;ZF = 0

If ZF is set to one, the number inside register is positive else negative

21Instructor: Muhammad Arif Butt, Ph.D.

TEST
• Format: TEST operand1, operand2
• Operation: : Perform bitwise AND of operand1 and operand2
• Operands: Operand1 can be a reg/mem

Operand2 can be an imm/reg
• Flags Affected: The OF and CF flags are cleared; the SF, ZF, and PF flags

are set according to the result. The state of the AF flag is undefined
• Usage: Used to test whether bit(s) in the first operand is/are having a value

of 1. Mask should contain one in the bit positions to be tested and zero
elsewhere

• Example 2: To check if AL contains a zero, we need to test all the bits

Bitwise TEST Instruction (cont…)

MOV al, 5d ; 0000 0101
TEST al, ffh ; 1111 1111

;ZF = 0

MOV al, 00h ; 0000 0000
TEST al, ffh ; 1111 1111

;ZF = 1

If ZF is set to one, the number inside register is zero

22Instructor: Muhammad Arif Butt, Ph.D.

TEST
• Format: TEST operand1, operand2
• Operation: : Perform bitwise AND of operand1 and operand2
• Operands: Operand1 can be a reg/mem

Operand2 can be an imm/reg
• Flags Affected: The OF and CF flags are cleared; the SF, ZF, and PF flags

are set according to the result. The state of the AF flag is undefined
• Usage: Used to test whether bit(s) in the first operand is/are having a value

of 1. Mask should contain one in the bit positions to be tested and zero
elsewhere

• Example 3: To check if AL contains an even or an odd number, we need
to test the least significant bit

Bitwise TEST Instruction (cont…)

MOV al, 5d ; 0000 0101
TEST al, 01h ; 0000 0001

;ZF = 0

MOV al, 6d ; 0000 0110
TEST al, 01h ; 0000 0001

;ZF = 1

If ZF is set to one, the number inside register is even else odd

23Instructor: Muhammad Arif Butt, Ph.D.

TEST
• Format: TEST operand1, operand2
• Operation: : Perform bitwise AND of operand1 and operand2
• Operands: Operand1 can be a reg/mem

Operand2 can be an imm/reg
• Flags Affected: The OF and CF flags are cleared; the SF, ZF, and PF flags

are set according to the result. The state of the AF flag is undefined
• Usage: Used to test whether bit(s) in the first operand is/are having a value

of 1. Mask should contain one in the bit positions to be tested and zero
elsewhere

• Example 4: To check if AL contains ASCII code of lower or upper case
alphabet, we need to test the bit#5 having weight of 32

Bitwise TEST Instruction (cont…)

MOV al, 65d ;(‘A’) 0100 0001
TEST al, 32d ; 0010 0000

;ZF = 1

MOV al, 97d ; 0110 0001
TEST al, 32d ; 0010 0000

;ZF = 0

If ZF is set to one, the ASCII of alphabet inside register is upper case else lower

24Instructor: Muhammad Arif Butt, Ph.D.

Demo

37/logical.nasm

Assembling & Executing x86-64 Program

25

Things To Do

Instructor: Muhammad Arif Butt, Ph.D.

Coming to office hours does NOT mean you are academically week!

