
Lecture # 38
Bit Shifting Operations

Computer Organization & Assembly Language Programming

#include<stdio.h>
#include<stdlib.h>
int main(){
printf("Learning is fun with Arif\n");
exit(0);

}

 global main
SECTION .data

msg: db "Learning is fun with Arif", 0Ah, 0h
len_msg: equ $ - msg

SECTION .text
main:

mov rax,1
mov rdi,1
mov rsi,msg
mov rdx,len_msg
syscall
mov rax,60
mov rdi,0
syscall

0: b8 01 00 00 00
5: bf 01 00 00 00
a: 48 be 00 00 00 00 00
11: 00 00 00
14: ba 1b 00 00 00
19: 0f 05
1b: b8 3c 00 00 00
20: bf 00 00 00 00
25: 0f 05

Instructor: Muhammad Arif Butt, Ph.D.

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	5 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	25

Solution: multiplex, using an instruction register

program

Memory

data

ALU

instruction	
register

data	
address

fetch /
execute
bit

mux

instruction

instruction	
address

Memory	
address	

input	

control	bus

address	bus

Memory	
output

address	bus (data	flows	not	shown,	to	minimize	clutter)

load	
on	
fetch

instruction

data

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	1 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	33

Interactive simulation (using Xor as an example)

Simulation process:
• Load the HDL file into the hardware simulator
• Enter values (0’s and 1’s) into the chip’s input pins (e.g. a and b)
• Evaluate the chip’s logic
• Inspect the resulting values of:

q Output pins (e.g. out)
q Internal pins (e.g. nota, notb, aAndNotb, notaAndb)

a

Not

Not

And

And

Or

b

out
nota

notb aAndNotb

notaAndb

Xor.hdl
CHIP Xor {

IN a, b;
OUT out;

PARTS:
Not (in=a, out=nota);
Not (in=b, out=notb);
And (a=a, b=notb, out=aAndNotb);
And (a=nota, b=b, out=notaAndb);
Or (a=aAndNotb, b=notaAndb, out=out);

}

CHIP Xor {
IN a, b;
OUT out;
PARTS:
Not(in=a, out=nota);
Not(in=b, out=notb);
And(a=nota, b=b, out=w1);
And(a=a, b=notb, out=w2);
Or(a=w1, b=w2, out=out);

}

@R1
D=M
@temp
M=D

0000000000000001
1111110000010000
0000000000010000
1110001100001000

For resources visit my personal website:
https://www.arifbutt.me
and course bitbucket repository:
https://bitbucket.org/arifpucit/coal-repo

• Recap: x86-64 Registers, Tool Chain & Instructions
• Shift Operations:

o SHL/SAL
o SHR
o SAR

• Demo (bitshift.nasm)
• Rotate Operations:

o ROL
o ROR
o RCL
o RCR

• Demo (bitrotate.nasm)
2

Today’s Agenda

Instructor: Muhammad Arif Butt, Ph.D.

3

Recap

Instructor: Muhammad Arif Butt, Ph.D.

4

Review: x86-64 Register Set

Instructor: Muhammad Arif Butt, Ph.D.

64-bit
register

Lowest 32-
bits

Lowest
16-bits

Lowest
8-bits

r0/rax eax ax al

r1/rbx ebx bx bl

r2/rcx ecx cx cl

r3/rdx edx dx dl

r4/rsi esi si sil

r5/rdi edi di dil

r6/rbp ebp bp bpl

r7/rsp esp sp spl

r8 r8d r8w r8b

r9 r9d r9w r9b

r10 r10d r10w r10b

r11 r11d r11w r11b

r12 r12d r12w r12b

r13 r13d r13w r13b

r14 r14d r14w r14b

r15 r15d r15w r15b

General Purpose Registers

EIP
063

RIP

SSE Media Registers

240 - 1

Memory

0

- ID VIP VIF AC VM RF - NT IOP1 IOP0 OF DF IF TF SF ZF - AF - PF - CF

63 21 20 19 18 17 16 14 13 12 11 10 9 8 7 6 4 2 0
RFLAGS

CS

DS

SS

ES

FS

GS

015

Segment Registers

ST0

ST1

ST2

.

.

.

ST7

079

FP Registers

0255511

zmm0 ymm0 xmm0

zmm1 ymm1 xmm1

zmm2 ymm2 xmm2

zmm3 ymm3 xmm3

zmm14 ymm14 xmm14

zmm15 ymm15 xmm15

127

5Instructor: Muhammad Arif Butt, Ph.D.

10001000
01000001
1000101001001001
0101011000011111
0001010011110000
10001000
01001101
10001000
01001001
1000101001001000
0101011000011000
0001010010010001
10001010
01001011

myexe
; COAL Video Lecture: 30
; Programmer: Arif Butt
; first.nasm
SECTION .data

msg db "Learning…", 0xA
EXIT_STATUS equ 54

 SECTION .bss
;nothing here
SECTION .text

global _start
_start:

;display a message on screen
mov rax,1
mov rdi,1
mov rsi,msg
mov rdx,26
syscall

;exit the program
mov rax,60
mov rdi, EXIT_STATUS
syscall

first.nasm

1000101001001001
0101011000011111
0001010011110000
10001000
01001101
10001000
10001000
01000001
0101011000011111
0001010011110000
10001000
1000101001001000
0001010010010001
10001010
01001011
0001010011110000
10001000
01001101
10001000

Assemble first.o Link

Review: x86-64 Tool Chain
Load & Execute

4Instructor: Muhammad Arif Butt, Ph.D.

Memory Model of x86-64
• The layout of various segments of a process running on a

Linux system is shown

• The x86-64 CPU chips that you can buy today implement
48 bit logical address for virtual memory (as shown), and
40 bits for physical memory

• The 64 bit Logical address can be broken down as:

Stack

Heap
Un-Initialized Data

(.bss)

Initialized Data
(.data)

Code
(.text)

0x0 (48 bits L.A)

0x7FFFFFFFFFFF
(131 TiB)

63 -48 47 39 38 -30 29 - 21 20 - 12 11 - 0

Unused PML4 index Page directory
pointer index

Page directory
index

Page table
index Page offset

0x400000

15Instructor: Muhammad Arif Butt, Ph.D.

Tool Chain & Programming Environment
The set of programming tools used to create a program is
referred to as the Tool chain. In this part of the course we
intend learning x86-64 assembly, and the environment/tool
chain involved are:

o Processor: Core 2duo/i3/i5/i7 (64 bit processor)

o Operating System: 64 bit Linux Distro (Ubuntu, Kali)

o Editor: gedit, vim, atom, sublime, Visual Studio,
Eclipse, Xcode

o Assembler: NASM, YASM, GAS, MASM

o Linker: LD a GNU linker

o Loader: Default OS

o Debugging/RE: gdb, radare2, objdump and readelf

Source Code File(s)
first.nasm

Object Code File(s)
first.o

Executable File
myexe

4Instructor: Muhammad Arif Butt, Ph.D.

Memory Model of x86-64
• The layout of various segments of a process running on a

Linux system is shown

• The x86-64 CPU chips that you can buy today implement
48 bit logical address for virtual memory (as shown), and
40 bits for physical memory

• The 64 bit Logical address can be broken down as:

Stack

Heap
Un-Initialized Data

(.bss)

Initialized Data
(.data)

Code
(.text)

0x0 (48 bits L.A)

0x7FFFFFFFFFFF
(131 TiB)

63 -48 47 39 38 -30 29 - 21 20 - 12 11 - 0

Unused PML4 index Page directory
pointer index

Page directory
index

Page table
index Page offset

0x400000

$ nasm –felf64 first.nasm

$ ld first.o –o myexe

$./ myexe

6

Review: Categories of x86-64 Instructions

Instructor: Muhammad Arif Butt, Ph.D.

Category Description Examples
Data Transfer Move from source to

destination
mov, movzx, movsx, lea, lds, lss, xchg,
push, pop, pusha, popa, pushf, popf

Arithmetic Arithmetic on integer add, addc, sub, subb, mul, imul, div,
idiv, neg, inc, dec, cmp

Bit Manipulation Logical & bit shifting
operations

and, or, not, xor, test, shl/sal, shr,
sar, ror, rol, rcr, rcl

Control Transfer Conditional and
unconditional jumps,
and procedure calls

jmp
jcc(jz,jnz,jg,jge,jl,jle,jc,jnc,...)
call, ret

String Move, compare, input
and output

movsb, movsw, lodsb, lodsw, stosb,
stosw, rep, repz, repe, repnz, repne

Floating Point Arithmetic fld, fst, fstp, fadd, fsub, fmul, fdiv

Conversion Data type conversions cbw, cwd, cdq, xlat

Input Output For input and output in, out

Miscellaneous Manipulate individual
flags

clc, stc, cld, std, sti

7

Shift Instructions

Instructor: Muhammad Arif Butt, Ph.D.

8

Logical/Arithmetic Shift Left (SHL/SAL)

Instructor: Muhammad Arif Butt, Ph.D.

• Format: SHL/SAL dest, count
• Operation: Shifts the bits in the destination to the left by count bits. A

zero is pushed into the least significand bit position and the msb is shifted
into the CF

• Operands: Destination operand can be a reg/mem
Count (<=63) operand can be an immediate value or CL

• Flags Affected: The CF contains the last most significand bit shifted out
of the destination operand

• Usage: Used to multiply the signed/unsigned destination contents with 2n,
where n is the number of bits shifted

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CF 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MOV ax, 5d
SHL/SAL ax, 1
;ax=10, cf=0

9

Logical Shift Right (SHR) Instruction

Instructor: Muhammad Arif Butt, Ph.D.

• Format: SHR dest, count
• Operation: Shifts the bits in the destination to the right by count bits. A

zero is pushed into the most significand bit position and the lsb is shifted
into the CF

• Operands: Destination operand can be a reg/mem
Count (<=63) operand can be an immediate value or CL

• Flags Affected: The CF contains the last least significand bit shifted out
of the destination operand

• Usage: Used to divide the unsigned destination contents with 2n, where n
is the number of bits shifted

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CF0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MOV ax, 33d
SHR ax, 1
;ax=16, cf=1

10

Shift Arithmetic Right (SAR) Instruction

Instructor: Muhammad Arif Butt, Ph.D.

• Format: SAR dest, count
• Operation: Shifts the bits in the destination to the right by count bits. The

sign bit is pushed into the most significand bit position and the lsb is
shifted into the CF

• Operands: Destination operand can be a reg/mem
Count (<=63) operand can be an immediate value or CL

• Flags Affected: The CF contains the last least significand bit shifted out
of the destination operand

• Usage: Used to divide the signed/unsigned destination contents with 2n,
where n is the number of bits shifted

1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CF

1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MOV ax, -9d
SAR ax, 1
;ax=-5, cf=1

11Instructor: Muhammad Arif Butt, Ph.D.

Demo

38/bitshift.nasm

Assembling & Executing x86-64 Program

12

Rotate Instructions

Instructor: Muhammad Arif Butt, Ph.D.

13

Rotate Left (ROL) Instruction

Instructor: Muhammad Arif Butt, Ph.D.

• Format: ROL dest, count
• Operation: The msb is placed into the CF as well as pushed into the

lsb. The remaining bits are moved one position to the left. This is
performed count number of times

• Operands: Destination operand can be a reg/mem
Count (<=63) operand can be an immediate value or CL

• Flags Affected: The CF contains the last most significand bit shifted out
of the destination operand

• Usage: Used for bit shifts across multiple words

Vol. 1 7-13

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS

7.3.6.3 Rotate Instructions

The ROL (rotate left), ROR (rotate right), RCL (rotate through carry left) and RCR (rotate through carry right)
instructions rotate the bits in the destination operand out of one end and back through the other end (see
Figure 7-10). Unlike a shift, no bits are lost during a rotation. The rotate count can range from 0 to 31.

The ROL instruction rotates the bits in the operand to the left (toward more significant bit locations). The ROR
instruction rotates the operand right (toward less significant bit locations).

The RCL instruction rotates the bits in the operand to the left, through the CF flag. This instruction treats the CF flag
as a one-bit extension on the upper end of the operand. Each bit that exits from the most significant bit location of
the operand moves into the CF flag. At the same time, the bit in the CF flag enters the least significant bit location
of the operand.

The RCR instruction rotates the bits in the operand to the right through the CF flag.

For all the rotate instructions, the CF flag always contains the value of the last bit rotated out of the operand, even
if the instruction does not use the CF flag as an extension of the operand. The value of this flag can then be tested
by a conditional jump instruction (JC or JNC).

7.3.7 Bit and Byte Instructions
These instructions operate on bit or byte strings. For the purpose of this discussion, they are further divided into
subordinate subgroups that:
• Test and modify a single bit
• Scan a bit string
• Set a byte given conditions
• Test operands and report results

Figure 7-10. ROL, ROR, RCL, and RCR Instruction Operations

Destination (Memory or Register)CF

31 0

Destination (Memory or Register) CF

031

Destination (Memory or Register)CF

31 0

Destination (Memory or Register) CF

31 0

ROL Instruction

RCL Instruction

RCR Instruction

ROR Instruction

63

 mov al, 11110000b
rol al, 1
;al=11100001 (e1)
;cf=1

14Instructor: Muhammad Arif Butt, Ph.D.

Rotate Carry Left (RCL) Instruction

Vol. 1 7-13

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS

7.3.6.3 Rotate Instructions

The ROL (rotate left), ROR (rotate right), RCL (rotate through carry left) and RCR (rotate through carry right)
instructions rotate the bits in the destination operand out of one end and back through the other end (see
Figure 7-10). Unlike a shift, no bits are lost during a rotation. The rotate count can range from 0 to 31.

The ROL instruction rotates the bits in the operand to the left (toward more significant bit locations). The ROR
instruction rotates the operand right (toward less significant bit locations).

The RCL instruction rotates the bits in the operand to the left, through the CF flag. This instruction treats the CF flag
as a one-bit extension on the upper end of the operand. Each bit that exits from the most significant bit location of
the operand moves into the CF flag. At the same time, the bit in the CF flag enters the least significant bit location
of the operand.

The RCR instruction rotates the bits in the operand to the right through the CF flag.

For all the rotate instructions, the CF flag always contains the value of the last bit rotated out of the operand, even
if the instruction does not use the CF flag as an extension of the operand. The value of this flag can then be tested
by a conditional jump instruction (JC or JNC).

7.3.7 Bit and Byte Instructions
These instructions operate on bit or byte strings. For the purpose of this discussion, they are further divided into
subordinate subgroups that:
• Test and modify a single bit
• Scan a bit string
• Set a byte given conditions
• Test operands and report results

Figure 7-10. ROL, ROR, RCL, and RCR Instruction Operations

Destination (Memory or Register)CF

31 0

Destination (Memory or Register) CF

031

Destination (Memory or Register)CF

31 0

Destination (Memory or Register) CF

31 0

ROL Instruction

RCL Instruction

RCR Instruction

ROR Instruction

63

• Format: RCL dest, count
• Operation: The previous value of the CF is shifted into the lsb and the

remaining bits are moved one position to the left. Finally, the msb is
removed and placed in the CF. This is performed count number of times

• Operands: Destination operand can be a reg/mem
Count (<=63) operand can be an immediate value or CL

• Flags Affected: The CF contains the last most significand bit shifted out
of the destination operand

• Usage: Used for bit shifts across multiple words
clc ; cf=0
mov al, 88h ; al=10001000 (88h)
rcl al, 1 ; al=00010000 (10h), cf=1
rcl al, 1 ; al=00100001 (21h), cf=0

15Instructor: Muhammad Arif Butt, Ph.D.

Rotate Right (ROR) Instruction

Vol. 1 7-13

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS

7.3.6.3 Rotate Instructions

The ROL (rotate left), ROR (rotate right), RCL (rotate through carry left) and RCR (rotate through carry right)
instructions rotate the bits in the destination operand out of one end and back through the other end (see
Figure 7-10). Unlike a shift, no bits are lost during a rotation. The rotate count can range from 0 to 31.

The ROL instruction rotates the bits in the operand to the left (toward more significant bit locations). The ROR
instruction rotates the operand right (toward less significant bit locations).

The RCL instruction rotates the bits in the operand to the left, through the CF flag. This instruction treats the CF flag
as a one-bit extension on the upper end of the operand. Each bit that exits from the most significant bit location of
the operand moves into the CF flag. At the same time, the bit in the CF flag enters the least significant bit location
of the operand.

The RCR instruction rotates the bits in the operand to the right through the CF flag.

For all the rotate instructions, the CF flag always contains the value of the last bit rotated out of the operand, even
if the instruction does not use the CF flag as an extension of the operand. The value of this flag can then be tested
by a conditional jump instruction (JC or JNC).

7.3.7 Bit and Byte Instructions
These instructions operate on bit or byte strings. For the purpose of this discussion, they are further divided into
subordinate subgroups that:
• Test and modify a single bit
• Scan a bit string
• Set a byte given conditions
• Test operands and report results

Figure 7-10. ROL, ROR, RCL, and RCR Instruction Operations

Destination (Memory or Register)CF

31 0

Destination (Memory or Register) CF

031

Destination (Memory or Register)CF

31 0

Destination (Memory or Register) CF

31 0

ROL Instruction

RCL Instruction

RCR Instruction

ROR Instruction63

• Format: ROR dest, count
• Operation: The lsb is placed into the CF as well as pushed into the msb.

The remaining bits are moved one position to the right. This is performed
count number of times

• Operands: Destination operand can be a reg/mem
Count (<=63) operand can be an immediate value or CL

• Flags Affected: The CF contains the last least significand bit shifted out
of the destination operand

• Usage: Used for bit shifts across multiple words
 mov al, 11110000b
ror al, 1
;al=01111000 (78h)
;cf=0

16Instructor: Muhammad Arif Butt, Ph.D.

Rotate Carry Right (RCR) Instruction

Vol. 1 7-13

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS

7.3.6.3 Rotate Instructions

The ROL (rotate left), ROR (rotate right), RCL (rotate through carry left) and RCR (rotate through carry right)
instructions rotate the bits in the destination operand out of one end and back through the other end (see
Figure 7-10). Unlike a shift, no bits are lost during a rotation. The rotate count can range from 0 to 31.

The ROL instruction rotates the bits in the operand to the left (toward more significant bit locations). The ROR
instruction rotates the operand right (toward less significant bit locations).

The RCL instruction rotates the bits in the operand to the left, through the CF flag. This instruction treats the CF flag
as a one-bit extension on the upper end of the operand. Each bit that exits from the most significant bit location of
the operand moves into the CF flag. At the same time, the bit in the CF flag enters the least significant bit location
of the operand.

The RCR instruction rotates the bits in the operand to the right through the CF flag.

For all the rotate instructions, the CF flag always contains the value of the last bit rotated out of the operand, even
if the instruction does not use the CF flag as an extension of the operand. The value of this flag can then be tested
by a conditional jump instruction (JC or JNC).

7.3.7 Bit and Byte Instructions
These instructions operate on bit or byte strings. For the purpose of this discussion, they are further divided into
subordinate subgroups that:
• Test and modify a single bit
• Scan a bit string
• Set a byte given conditions
• Test operands and report results

Figure 7-10. ROL, ROR, RCL, and RCR Instruction Operations

Destination (Memory or Register)CF

31 0

Destination (Memory or Register) CF

031

Destination (Memory or Register)CF

31 0

Destination (Memory or Register) CF

31 0

ROL Instruction

RCL Instruction

RCR Instruction

ROR Instruction

• Format: RCR dest, count
• Operation: The previous value of the CF is shifted into the msb and the

remaining bits are moved one position to the right. Finally, the lsb is
removed and placed in the CF. This is performed count number of times

• Operands: Destination operand can be a reg/mem
Count (<=63) operand can be an immediate value or CL

• Flags Affected: The CF contains the last least significand bit shifted out
of the destination operand

• Usage: Used for bit shifts across multiple words

63

stc ; cf=1
mov al, 10h ; al= 00010000 (10h)
rcr al, 1 ; al= 10001000 (88h), cf=0

17Instructor: Muhammad Arif Butt, Ph.D.

Demo

38/bitrotate.nasm

Assembling & Executing x86-64 Program

18

Things To Do

Instructor: Muhammad Arif Butt, Ph.D.

Coming to office hours does NOT mean you are academically week!

