
Lecture # 45
Mixing C with x86-64 Assembly

Computer Organization & Assembly Language Programming

#include<stdio.h>
#include<stdlib.h>
int main(){
printf("Learning is fun with Arif\n");
exit(0);

}

 global main
SECTION .data

msg: db "Learning is fun with Arif", 0Ah, 0h
len_msg: equ $ - msg

SECTION .text
main:

mov rax,1
mov rdi,1
mov rsi,msg
mov rdx,len_msg
syscall
mov rax,60
mov rdi,0
syscall

0: b8 01 00 00 00
5: bf 01 00 00 00
a: 48 be 00 00 00 00 00
11: 00 00 00
14: ba 1b 00 00 00
19: 0f 05
1b: b8 3c 00 00 00
20: bf 00 00 00 00
25: 0f 05

Instructor: Muhammad Arif Butt, Ph.D.

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	5 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	25

Solution: multiplex, using an instruction register

program

Memory

data

ALU

instruction	
register

data	
address

fetch /
execute
bit

mux

instruction

instruction	
address

Memory	
address	

input	

control	bus

address	bus

Memory	
output

address	bus (data	flows	not	shown,	to	minimize	clutter)

load	
on	
fetch

instruction

data

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	1 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	33

Interactive simulation (using Xor as an example)

Simulation process:
• Load the HDL file into the hardware simulator
• Enter values (0’s and 1’s) into the chip’s input pins (e.g. a and b)
• Evaluate the chip’s logic
• Inspect the resulting values of:

q Output pins (e.g. out)
q Internal pins (e.g. nota, notb, aAndNotb, notaAndb)

a

Not

Not

And

And

Or

b

out
nota

notb aAndNotb

notaAndb

Xor.hdl
CHIP Xor {

IN a, b;
OUT out;

PARTS:
Not (in=a, out=nota);
Not (in=b, out=notb);
And (a=a, b=notb, out=aAndNotb);
And (a=nota, b=b, out=notaAndb);
Or (a=aAndNotb, b=notaAndb, out=out);

}

CHIP Xor {
IN a, b;
OUT out;
PARTS:
Not(in=a, out=nota);
Not(in=b, out=notb);
And(a=nota, b=b, out=w1);
And(a=a, b=notb, out=w2);
Or(a=w1, b=w2, out=out);

}

@R1
D=M
@temp
M=D

0000000000000001
1111110000010000
0000000000010000
1110001100001000

For resources visit my personal website:
https://www.arifbutt.me
and course bitbucket repository:
https://bitbucket.org/arifpucit/coal-repo

• Recap: Points to Ponder
• Calling C-Library Functions from Assembly Program
– Demo (callputs.nasm)

– Demo (callprintf.nasm)

– Demo (callgetputchar.nasm)

• Calling Assembly Functions from C Program
– Demo (ex1.c and getval.nasm)

– Demo (ex2.c and maxofthree.nasm)

2

Today’s Agenda

Instructor: Muhammad Arif Butt, Ph.D.

3

Points to Ponder

Instructor: Muhammad Arif Butt, Ph.D.

4Instructor: Muhammad Arif Butt, Ph.D.

Points to Ponder
• Every microprocessor x86, MIPS, ARM, Sun SPARC, Motorola Power PC, and so

on, has its own assembly language, and organizational structure. In this part of the
course we are studying the assembly language of x86-64 microprocessor, which
can be written in two formats Intel and AT&T

• NASM, YASM, GAS, FASM, MASM are different assemblers that can assemble
the assembly language programs written for x86 microprocessors. Each assembler
has its own way of writing the assembly program and has its own assembler
directives. In this part of the course we are using the Netwide Assembler

• Different assemblers generate different object file format (as per the processor and
OS) from the assembly source files like ELF32, ELF64, COFF, win32 and so on

• There can be different operating systems (Linux, Windows, OS/X), and the
differences may come into play when we use operating system services using their
respective system call interface. We are using System-V AMD64 ABI

• Finally using library functions from your assembly programs also make the
difference since all linkers do not work the same way. We are using Linux linker
(ld) in this part of the course and may use gcc as well

5

Calling C-Library Functions
from Assembly Program

Instructor: Muhammad Arif Butt, Ph.D.

6Instructor: Muhammad Arif Butt, Ph.D.

; COAL Video Lecture: 45
; callputs.nasm

 SECTION .data
msg: db "Learning is fun with Arif Butt...”

SECTION .text
global main
extern puts ; int puts(const char *s)
extern exit ; void exit(int status)

main:
lea rdi, msg
call puts
mov rdi, rax
call exit

$ nasm –felf64 callputs.nasm
$ gcc --static callputs.o
$./a.out
Learning is fun with Arif Butt...
$ echo $?
34

• Reasons to do so are:
o There are tens of standard C library functions that can be used for

I/O, specially while working with floating point numbers
o There are extensive set of functions available in the math library,

thus making our life easy

Calling C-Functions from Assembly Program

7Instructor: Muhammad Arif Butt, Ph.D.

Demo

45/callputs.nasm
45/callprintf.nasm
45/getputchar.nasm

Examples: Calling C-Functions from Assembly Program

8

Calling Assembly Functions
from C-Program

Instructor: Muhammad Arif Butt, Ph.D.

9Instructor: Muhammad Arif Butt, Ph.D.

Calling Assembly Functions from C Program
Reasons to do so are:
• You have assembly code already written that you wish to use
• You need to improve the speed of a particular function
• You want to manipulate SFRs or memory-mapped I/O devices

; COAL Video Lecture: 45
; maxofthree.nasm
 SECTION .text
global maxofthree

maxofthree:
mov rax, rdi
cmp rax, rsi
cmovl rax, rsi
cmp rax, rdx
cmovl rax, rdx
ret

// COAL Video Lecture: 45

// ex2.c

 #include <stdio.h>

#include <stdlib.h>
extern long maxofthree(long, long, long);

int main(){
int rv = maxofthree(15, -23, 7);
printf("max = %ld\n",rv);

return 0;
}

It is also possible to include a bit of assembly code right inside your C file, called "inline
assembly”. Syntax is of course compiler dependent. In gcc: (_asm_”assembly code”);

10Instructor: Muhammad Arif Butt, Ph.D.

Demo

ex1.c, getval.nasm

ex2.c, maxofthree.nasm

Examples: Calling Assembly Procedures from C-Program

11

Things To Do

Instructor: Muhammad Arif Butt, Ph.D.

Coming to office hours does NOT mean you are academically week!

