
CMP325
Operating Systems

Lecture 02

Introduction to Linux Environment

Fall 2021

Arif Butt (PUCIT)
Note:
Some slides and/or pictures are adapted from course text book and Lecture slides of
• Dr Syed Mansoor Sarwar
• Dr Kubiatowicz
• Dr P. Bhat
• Dr Hank Levy
• Dr Indranil Gupta

For practical implementation of operating system concepts discussed in these slides,
students are advised to watch and practice video lectures on the subject of OS with
Linux by Arif Butt available on the following link:
http://www.arifbutt.me/category/os-with-linux/

http://www.arifbutt.me/category/os-with-linux/

Today’s Agenda
• Review of previous Lecture

• Virtualization and Hypervisors

• Introduction to Linux Distributions

• Installing Linux on Sun Virtual Box

• Interacting with Linux OS

• Linux Shell Commands

• Linux File Hierarchy Standard

• Linux System Calls Interface

• Compiling a C program in Linux
2

Concept of
Virtualization

3

file://Users/arifbutt/Documents/OS/Fall 15 OS/pre mid lectures/Linux Commands Slides/Lecture 7 (Partitioning, Formatting and Installation).pdf

4

Virtualization
• Virtualization is a framework or methodology of dividing the

resources of a computer system into multiple execution
environments

• A virtual machine is a s/w implementation of a machine that
executes programs like a physical machine

5

Implementation of VMMs/Hypervisors
• Type 2 hypervisors: Applications that run on

standard operating system (host OS), and provide
VMM features to guest operating systems. Examples:
Oracle VirtualBox, VMware Workstation and Fusion

• Type 1 hypervisors: Sits right on top of h/w, so
there is no concept of host OS. Guest OSs runs on
top of hypervisor. Examples: Oracle VMServer for
SPARC and x86, Vmware ESX, Critix XenServer, MS
Windows Server with HyperV, RedHat Linux with
KVM

• Type 0 hypervisors: Hardware-based solutions that
provide support for virtual machine creation and
management via firmware. Examples: IBM LPARs and
Oracle LDOMs

6

Other Variants of VMMs/Hypervisors
• Paravirtualization: Technique in which the guest OS is

modified to work in cooperation with the VMM to
optimize performance

• Programming-environment virtualization: VMMs do
not virtualize real hardware but instead create an
optimized virtual system. Example: Oracle Java Virtual
Machine and Microsoft.Net

• Emulators: Allow applications written for one
hardware environment to run on a very different
hardware environment, such as a different type of
CPU. Example is Qemu

• Application containment: Not virtualization at all but
rather provides virtualization-like features by
segregating applications from the operating system,
making them more secure, manageable. Including
Oracle Solaris Zones, BSD Jails

7

Architecture of Type2 Hypervisor

Hypervisor / Virtual Machine Manager

Virtual Machine 1 Virtual Machine 2 Virtual Machine 3

Intro to Linux OS

8

file://Users/arifbutt/Documents/OS/Fall 15 OS/pre mid lectures/Linux Commands Slides/Lecture 7 (Partitioning, Formatting and Installation).pdf

9

History of UNIX

Ken Thompson Dennis Ritchie

• Since the source code of UNIX was widely available,
various organizations developed their own versions, which
led to chaos as far as UNIX history is concerned.

• Two major versions developed:
• System V, from AT&T
• BSD (Berkley Software Distribution from UC Berkeley)

Minor variation includes FreeBSD, OpenBSD and NetBSD.

• To make it possible to write programs that could run on
any UNIX system, IEEE developed a standard for UNIX,
called POSIX and later SUSv3, that most versions of
UNIX now support

• All modern operating systems have
their roots in 1969, when Dennis
Ritchie and Ken Thompson developed
the C language and the UNIX
operating system at AT&T Bell labs

10

History of Linux Kernel

• Todays Linux run on:
• 97% of all world’s super computers (including top 10)
• 80% of all smart phones
• Millions of desktop computers
• 70% of all web servers run on Linux
• Embedded Systems (routers, Rpi boards, self deriving cars,

washing machines etc)

• Source code of latest stable kernel (4.18.5) can be
downloaded from https://www.kernel.org

• In 1991, Linus Torvald, a student of
university of Helsinki Finland, bought a
386 computer and tried to write a
brand new POSIX compliant kernel,
which became what we call Linux today

https://www.kernel.org/

11

Linux Distributions
A Linux distribution is a compilation of Linux Kernel
bundled with:
• System management tools
• Server softwares
• Desktop applications
• Documentations
Some popular Linux distributions are:
• Kali Linux (https://www.kali.org)
• Red Hat (https://www.redhat.com/en)
• Ubuntu (https://www.ubuntu.com)
• CentOS (https://www.centos.org)
• Debian (https://www.debian.org)
• Linux Mint (https://www.linuxmint.com)
• OpenSuSe (https://www.opensuse.org)

https://www.redhat.com/en)
https://www.redhat.com/en)
https://www.redhat.com/en)
https://www.redhat.com/en)
https://www.redhat.com/en)
https://www.redhat.com/en)
https://www.redhat.com/en)

12

UNIX is basically a Simple Operating System

But YOU have to be a GENIUS to understand the Simplicity

Dennis Ritchie

Linux Installation on
Sun Virtual Box

13

file://Users/arifbutt/Documents/OS/Fall 15 OS/pre mid lectures/Linux Commands Slides/Lecture 7 (Partitioning, Formatting and Installation).pdf

14

Interacting with
Linux OS

15

file://Users/arifbutt/Documents/OS/Fall 15 OS/pre mid lectures/Linux Commands Slides/Lecture 7 (Partitioning, Formatting and Installation).pdf

16

Interacting with Linux OS
Option-I: Use a desktop/laptop computer of your own running
either a
• real Linux distribution, (may be dual boot)
• MS Windows operating system executing cigwin dll
• guest Linux operating system using some virtualization

software

Option-II: You may like to remotely login using ssh, telnet, putty, or
some other remote login facility on PUCIT LAN
ssh username@172.16.0.21

ssh username@172.16.0.103

Option-III: You can also login using WAN on following machines as
well (if permitted)
ssh username@202.147.169.197 (Solaris 11.0)
ssh username@202.147.169.196 (PC BSD)

17

Interacting with Linux OS
• For a user of an operating system there are two types

of interfaces, using which a user can give commands to
perform various operations:

• Graphical User Interface: GNOME, KDE, Unity, Xfce,
Enlightenment, Sugar

• Command Line Interface: Also called a shell. A Linux
shell is an interactive program that accepts commands
from user via key board, parse them from left to right
and execute them. Most of the shells available in
todays Linux provides the features of executing user
commands and programs, I/O handling, programminng
ability (scripts and binaries). Example shells are
Bourne shell, Bourne Again Shell, C Shell, Korn Shell

18

Linux Shell Commands
• A shell command can be internal/built-in or External

• The code to execute an internal command is part of the
shell process, e.g., cd, dot, echo, pwd.

• The code to process an external command resides in a file
in the form of a binary executable program file or a shell
script, e.g., cat, ls, mkdir, more.

• The general syntax of a shell command is

command [option(s)] [argument(s)]

• After reading the command the shell determines whether
the command is internal or external

• It processes all internal commands by using the
corresponding code segments that are within its own code

• To execute an external command, it searches the
command in the search path. Directories names stored in
the PATH variable. [echo $PATH]

19

Linux Shell Commands

20

Linux Shell Commands

21

Linux Shell Commands

22

Linux Shell Commands

23

Linux Shell Commands

24

Linux Shell Commands

25

Linux Shell Commands

26

UNIX Manuals
• Don’t expect to remember everything… I don’t!

• Use man program to display help pages from
/usr/local/share/man/ directory having
further sub-directories each for following:
• 1 – Shell commands; e.g., mv, ls, cat, …

• 2 – System calls; e.g., read(), write(), open(), …

• 3 – Library calls; e.g., printf(), scanf(), …

• 4 – Device & NW specific information

• 5 – File Formats; e.g., /etc/passwd, /etc/shadow,

• 6 – Games & demos; e.g., fortune, worms, …

• 7 – Miscellaneous; e.g., ascii character map, …

• 8 – Admin functions; e.g., fsck, network daemons

File Hierarchy Standard

27

28

Linux File Hierarchy Standard
• All UNIX based OSs normally follow the FHS. To get

info of your file system hierarchy you can give the
command $man hier or can visit the following link

http://www.pathname.com/fhs/pub/fhs-2.3.pdf

• Every thing that exist on your Linux system can be
found below the root (/) directory. Some important
directories are:

• Binary Directories: bin, sbin, lib, opt

• Configuration Directories: boot, etc

• Data Directories: home, root, media, mnt, tmp

• In-memory Directories: dev, proc, sys

• System resources: usr

• Variable data: var

http://www.pathname.com/fhs/pub/fhs-2.3.pdf

Linux
System Call Interface

29

30

OS Kernel
• Kernel consists of everything

below the System Call interface
and above the physical h/w.

• Kernel is the place where real
work is done, it provides the
process mgmt, memory mgmt, I/O
mgmt, file mgmt, CPU scheduling,
and other OS functions.

• Kernel is also called message
exchange, because no component
can communicate without it.

• Kernel is never paged out of
memory and its execution is never
preempted.

Users

Applications

OS API, AUI

OS Kernel

Computer H/W

31

Types of Entry Points to Kernel
• Kernel code will be executed in one of the following

four occasions:

• When a program makes a System Call.

• When an I/O device has generated an Interrupt; e.g. a
disk controller has generated an interrupt to CPU that
my reading is complete the data is now sitting in my
buffer, You can go and get it.

• When a trap occurs; e.g. If a program has made a
division by zero, a trap will be generated which will
execute a different piece of code in kernel (TSR).

• A signal comes to a process. For that as well some piece
of kernel code will be executed.

System Call Signal

Interrupt Trap

32

System Call
A system call is the controlled entry point into the kernel
code, allowing a process to request the kernel to perform
a privileged operation. Before going into the details of how
a system call works, following points need to be understood:
• A system call changes the processor state from user mode

to kernel mode, so that the CPU can access protected
kernel memory

• The set of system calls is fixed. Each system call is
identified by a unique number

• Each system call may have a set of arguments that specify
information to be transferred from user space to kernel
space and vice versa

• One must go through the man pages for better
understanding:

man 2 intro Introduction to Section 2 of man pages
man syscalls List of system calls (wrappers)
man syscall Used to invoke a syscall having no wrapper with its ID
man _syscall Macro used to make a system call (deprecated)

33

System Call (cont…)
• If a process is running a user program in user mode and

needs a system service, such as reading data from a file,
it has to execute a trap or system call instruction to
transfer control to the OS. The OS then figures out
what the calling process wants by inspecting the
parameters. Then it carries out the system call and
returns control to the instruction following the system
call.

• Making a system call is similar to making a procedure call,
difference is that system call enter the kernel code and
procedure call do not.

34

System Call (cont…)

35

System Call (…)
Types of System Calls
• Process Control

• End, abort
• Load, execute
• Create, terminate
• Get/set process attributes
• Allocate/de-allocate memory to processes

• File Management
• Create, delete
• Open, close
• Read, write
• Get/Set file attributes

• Information Maintenance
• Get/Set date, time, or system data
• Get/set process, file or device attributes

• Communication
• Create/Delete communication connection
• Send/Receive message
• Attach/detach remote devices

All OS’s offer their own System Calls

36

System Call vs Library Call

37

System Call

• Executed by OS kernel.

• Perform simple single

operation.

• System calls usually return

an integer:

int res = sys_call(some_args)

If return value >= 0 (OK)

If return value < 0 (Error)

Library Call

• Executed in the User

Program.

• May perform several tasks

and may call system calls.

• Library functions often return

pointers:

FILE * fp = fopen(“file1”, “r”)

Return NULL for failure

38

39

gcc –save-temps hello.c

#include <stdio.h>

int main(){

printf(“Hello World \n”);

}

40

Compiling and Running C Programs

Use any editor to type your program and then to compile use gcc compiler:

$ gcc prog1.c

This will create an executable file a.out in the pwd. Now to execute the file

$./a.out

If you just type $ a.out, it will say a.out not found. So either use ./ before the
exe name or add the current directory in the search path using following command

$ PATH=$PATH:.

Once you compile another program in the same directory, the executable name is
again a.out which will overwrite the previous executable file. To over come this use
–o flag when compiling your source file.

$ gcc prog1.c –o prog1

Now this will create an executable file with the name as the second argument i.e.,
prog1 in this case. To execute the file give following command.

$./prog1

SUMMARY

41

We’re done for now, but
Todo’s for you after this
lecture…

42

If you have problems (in finding drawbacks) visit me in counseling hours. . . .

• Go through the slides and Book Sections: 2.3, 2.8

• Go through Unix The Text Book Chapters: 3,4,5, 7

• Make your hands dirty by writing some basic C programs
in UNIX using gcc compiler.
• A program that receives two command line arguments, a text file name and

a string via command line parameters, opens that file, search the string and
display the line(s) containing that string only. (See grep command)

• A program that is passed a file name as command line parameter, it opens
the file, encrypts its contents and saves the encrypted file in the same
directory with another name. (cipher).

• Make a decipher program also which do vice versa of above.

