
CMP325
Operating Systems

Lecture 04, 05

Process Management

Fall 2021

Arif Butt (PUCIT)
Note:
Some slides and/or pictures are adapted from course text book and Lecture slides of
• Dr Syed Mansoor Sarwar
• Dr Kubiatowicz
• Dr P. Bhat
• Dr Hank Levy
• Dr Indranil Gupta

For practical implementation of operating system concepts discussed in these slides,
students are advised to watch and practice video lectures on the subject of OS with
Linux by Arif Butt available on the following link:
http://www.arifbutt.me/category/os-with-linux/

http://www.arifbutt.me/category/os-with-linux/

Today’s Agenda

• Review of Previous Lecture

• Process States

• Introduction to Queuing Architecture

• Process Schedulers

• Process Creation and Termination

• Process and System Limits

2

3

CPU Bound and I/O Bound Processes
• I/O-bound process – spends more time doing I/O

than computations; Many short CPU bursts
• Examples: Word processing, text editors. Billing

system of Wapda which involves lot of printing

I/O Burst CPU Burst I/O Burst CPU Burst

CPU Burst I/O CPU Burst I/O

• CPU-bound process – spends more time doing
computations; Few very long CPU bursts

• Examples: Simulation of NW traffic involving lot of
mathematical calculation, scientific applications
involving matrix multiplication, DSP applications

4

2-State Process Model
• Broadly speaking life of a process consists of CPU

bursts and I/O bursts. So simplest possible model can
be constructed by observing that at any particular
time, a process is either being executed by a processor
or is not running or waiting for an I/O

• There may be a number of processes in the “not
running” state but only one process will be in “running”
state

Running
Not

Running

Enter

Dispatch

Pause

Wait for an I/O

Exit

5

Queuing Diagram (2-State Process Model)

• Queuing structure for a two state process model is:

Limitations

• If all processes in the queue are always ready to execute only then the

above queuing discipline will work

• But it may also be possible that some processes in the queue are ready

to execute, while some are waiting for an I/O operation to complete

• So the scheduler/dispatcher has to scan the list of processes looking

for the process that is not blocked and is there in the queue for the

longest

6

5-State Process Model
• Broadly speaking the life of a process consist of CPU burst

and I/O burst but in reality
• A process may be waiting for an event to occur; e.g. a process has

created a child process and is waiting for it to return the result

• A process may be waiting for a resource which is not available at
this time

• Process has gone to sleep for some time

• So generally speaking a Process may be in one of the
following five states:
▪ new: The process is being created (Disk to Memory)

▪ ready: The process is in main memory waiting to be assigned to a
processor

▪ running: Instructions are being executed

▪ waiting: The process is waiting for some event to occur (I/O
completion or reception of a signal)

▪ terminated: The process has finished execution

As a process executes, it changes state:

– new: The process is being created

– ready: The process is waiting to run

– running: Instructions are being executed

– waiting: Process waiting for some event to occur

– terminated: The process has finished execution

5-State Process Model

7

8

Queuing Diagram (Using 2-Queues

Limitation: When an event occurs the dispatcher would have to cycle through

the entire Blocked Queue to see which process is waiting for that event.

This can cause huge overhead when there may be 100’s or 1000’s of processes

9

Process Scheduling Queues
• Job Queue – When a process enters the system it is put

into a job Queue. This queue consists of all processes in
the system

• Ready Queue – This queue consists of processes that are
residing in main memory and are ready and waiting to
execute. It is generally stored as a link list

• Device Queues – When the process is allocated the CPU,
it executes for a while and eventually quits as it may need
an I/O. The list of processes waiting for a particular I/O
device is called a device queue. Each device has its own
device queue

• A process in its life time will be migrating from one Q to
another Q

Ready Queue And Various I/O Device Queues
• Process not running PCB is in some scheduler queue

– Separate queue for each device/signal/condition
– Each queue can have a different scheduler policy

Other
State
PCB9

Link

Registers
Other
State
PCB6

Link

Registers
Other
State
PCB16

Link

Registers

Other
State
PCB8

Link

Registers

Other
State
PCB2

Link

Registers
Other
State
PCB3

Link

Registers

Head

Tail

Head

Tail

Head

Tail

Head

Tail

Head

Tail

Ready
Queue

Tape
Unit 0

Disk
Unit 0

Disk
Unit 2

Ether
Netwk 0

10

11

Queuing Diagram

12

Schedulers

• A process migrates between various scheduling

queues throughout its life cycle. OS must select

processes from these queues in some predefined

fashion. This selection is done by an appropriate

scheduler

“Scheduling is a matter of managing queues to

minimize queuing delay and to optimize

performance in a queuing environment”

13

Long Term Scheduler
• Long-term scheduler (or job scheduler) – selects

processes from the job pool (processes spooled on hard
disk) to be brought into the ready queue (inside main
memory)

• Used in batch systems, timesharing OS has no long term
scheduler

• Long-term scheduler is invoked very infrequently
(seconds, minutes) (may be slow)

• Must select a good mix of I/O bound and CPU bound
processes
• If all processes selected by LTS are I/O bound, then Ready Queue

will almost always be empty
• If all processes selected by LTS are CPU bound, then I/O waiting

queue will almost always be empty

• The long-term scheduler controls the degree of
multiprogramming. More processes, smaller percentage of
time each process is executed

14

Short Term Scheduler
• Short-term/CPU/process scheduler is a kernel component

that decides which process runs, when and for how long

• Short-term scheduler is invoked very frequently
(milliseconds) (must be fast)

• On a context/process switch the system saves the state of
the currently running process and loads the saved state of
the selected process from the run queue.

• Invoked when following events occur

• CPU slice of the current process finishes

• Current process needs to wait for an event

• Clock interrupt

• I/O interrupt

• System call

• Signal

15

Medium Term Scheduler
▪ The CPU is so much faster than I/O that it will be

common for all of the processes in memory to be
waiting for I/O. Thus even with multiprogramming
the CPU could be idle most of the time

▪ Solution is “SWAPPING”, which involves moving part
or all of the process from main memory to disk

▪ When all the processes in main memory are in Block
state (and some other processes wants to come in, but we don’t have

enough memory), the OS can suspend one process by
putting it in the suspended states and transferring
it to disk. This is called a swap-out operation. Now
the main memory has space to bring in a new process
(swap-in)

16

Medium Term Scheduler (cont…)

• Also known as swapper

• Selects an in-memory process and swaps it out to
the disk temporarily

• Swapping decision is based on several factors
• Arrival of a higher priority process but no memory

available

• To improve process mix

• Requiring memory to be freed up because memory
requirement of a process cannot be met

• Blocked state becomes suspend state when
swapped to disk

17

Limitation: This only allows processes which are blocked to be swapped out.

What if there is no blocked process but we still need to free up memory?

Solution: Add another state Ready Suspended and swap out a process from the

ready state

6-State Process Model (one suspended state)

18

7-State Process Model (two suspended state)

19

Context Switch / Process Switch
A context switch occurs when the CPU switches from one process to another

20

▪ When CPU switches to another process, the
system must save the state (context) of the
‘current’ (old) process and load the saved state
for the new process.

▪ Context-switch time is overhead; the system does
no useful work while switching.

▪ Scheduler has nothing to do with a process
switch. It is mainly the job of Dispatcher. The
time it takes for a dispatcher to stop one process
and start another is known as dispatch latency.

▪ Interrupt, Trap and signal triggers a process
switch.

Context Switch / Process Switch

21

Steps involved in a full Process switch are:

▪ Save context of currently running process

(including PC and other registers)

▪ Move this PCB to an appropriate Queue

▪ Select another process for execution (Kernel

Schedules)

▪ Update PCB of selected process

▪ Update memory management data structures

▪ Restore the context of the process

Context Switch / Process Switch

Process Creation
• Parent process create children processes, which,

in turn create other processes, forming a tree of
processes

• Process creation and termination are the only
mechanisms used by the UNIX system to
execute external commands

• Once the OS decides to create a process it
proceeds as follows:

• Assigns a unique PID to the new process

• Allocate space

• Initialize the PCB for that process

• Set appropriate linkages

• Create or expand other data structures
22

Process Creation (cont…)
• Resource sharing

• Parent and children share all resources
• Children share a subset of parent’s resources

(UNIX)
• Parent and child share no resources

• Execution
• Parent and children execute concurrently

(UNIX)
• Parent waits until children terminate

• Address Space
• Child duplicate of parent process (UNIX)

• Child has a program loaded onto it

23

Process Creation (cont…)

• UNIX examples
• fork() system call creates a new process
• exec() system call used after a fork to replace

the process memory image with a new executable

• Reasons for Process Creation
• In batch environment a process is created in

response to the submission of a job
• In interactive environment a process is created

when a new user attempts to log on
• OS can create a process to perform a function

on behalf of a user program. (e.g. printing)
• Spawning When a process is created by OS at the explicit request of another process.

24

Processes Tree on a UNIX System

25

Process Termination
• A process terminates when it finishes

executing its last statement and requests

the operating system to terminate it using

the exit() system call

• At this point the process returns data to

its parent process

• Process resources are de-allocated by the

OS, to be recycled later

26

Process Termination (cont…)
• A parent may terminate execution of one of

its children for a variety of reasons such
as:
• Task performed by the child is no longer

required
• Child has exceeded allocated resources (main

memory, execution time, etc.)
• Parent needs to create another child but has

reached its maximum children limit
• Parent exits

• OS does not allow child to continue if its
parent terminates

• Cascaded termination
27

Process Termination (cont…)

• A process may terminate due to following
reasons:
• Normal completion

• Memory unavailable

• Protection error

• Mathematical error

• I/O failure

• Cascading termination (by OS)

• Operator intervention

28

29

Command Description

ps [-aelu] Display status of processes

top Display information about top 20 processes

vim file1.txt & Running a command in back ground

CTRL + Z Suspend a foreground process to go back to
the shell

jobs Display status of suspended and background
processes

bg %job_id Put a process in background

fg %job_id Move background process to the foreground

CTRL + C Kill foreground process

kill [-signal_no] proc_list Send the signal for signal_no to processes
whose PIDs or jobIDs are specified in
proc_list. jobIDs must start with %.

Process Related UNIX Commands

Process ID and Parent Process ID

30

▪ Each process has a Process ID (PID), a positive integer that
uniquely identifies a process on the system

▪ Above calls returns PID and PPID of the current process. Never
fails

▪ On a shell you can get the PID of the shell in the environment
variable in $$ and the parent ID in environment variable PPID

▪ The parent of any process can be found by looking at the 4th
field of /proc/PID/stat file. Also see the 3rd field which shows
the state of the process (RSDZTX). (See man page of proc for
details)

▪ The init, now systemd is a user process having a PID of 1. It is
invoked by the kernel at the end of the booting process

▪ Page daemon now kthreadd is a system process having a PID of 2.
It support the paging of virtual memory system

pid_t getpid();

pid_t getppid();

Process Creation using fork()

31

▪ The fork() system call allows one process, the parent, to create a
new process, the child

▪ It is a system call which is called once but return twice, once in
the parent and once in the child. To the parent process it returns
PID of child process and to the child process it returns zero

▪ After the call returns both parent and child processes continues
their execution concurrently from the next line of code

▪ The child process is a clone of the parent and obtains copies of
the parent’s stack, data, heap,and text segments

▪ PIDs are allocated sequentially to the new child processes, so
effectively unique (but do wrap up after a very long time)

▪ On success, the return value to the child process is 0 and the
return value to the parent process is PID of the child

▪ On failure, a -1 will be returned in the parent context, no child
process created, and errno will be set appropriately

pid_t fork();

fork() – Reasons for Failure

• Maximum number of processes allowed to

execute under one user has exceeded

• Maximum number of processes allowed on the

system has exceeded

• Not enough swap space

32

33

34

PID: 597

35

1. //fork1.c

2. int main()

3. {

4. int i = 54, cpid = -1;

5. cpid = fork();

6. if (cpid == -1)

7. {

8. printf (“\nFork failed\n”);

9. exit (1);

10. }

11. if (cpid == 0) //child code

12. printf (“\n Hello I am child \n”);

13. else //parent code

14. printf (“\n Hello I am parent \n”);

15. }

• Parent forks Parent

i = 54
cpid = -1

DATA

Using fork() & exit() system call

PID: 597

36

1. //fork1.c

2. int main()

3. {

4. int i = 54, cpid = -1;

5. cpid = fork();

6. if (cpid == -1)

7. {

8. printf (“\nFork failed\n”);

9. exit (1);

10. }

11. if (cpid == 0) //child code

12. printf (“\n Hello I am child \n”);

13. else //parent code

14. printf (“\n Hello I am parent \n”);

15. }

PID: 632
1. //fork1.c

2. int main()

3. {

4. int i = 54, cpid = -1;

5. cpid = fork();

6. if (cpid == -1)

7. {

8. printf (“\nFork failed\n”);

9. exit (1);

10. }

11. if (cpid == 0) //child code

12. printf (“\n Hello I am child \n”);

13. else //parent code

14. printf (“\n Hello I am parent \n”);

15. }

Using fork() & exit() system call
Parent Child

i = 54
cpid = 632

DATA
i = 54
cpid = 0

DATA

• After fork parent and child are identical except for the return value of fork
(and of course the PIDs).

• Because data are different therefore program execution differs.

• They are free to execute on their own from now onwards, i.e. after a successful
or unsuccessful fork() system call both will start their execution from line#6.

PID: 597

37

1. //fork1.c

2. int main()

3. {

4. int i = 54, cpid = -1;

5. cpid = fork();

6. if (cpid == -1)

7. {

8. printf (“\nFork failed\n”);

9. exit (1);

10. }

11. if (cpid == 0) //child code

12. printf (“\n Hello I am child \n”);

13. else //parent code

14. printf (“\n Hello I am parent \n”);

15. }

PID: 632
1. //fork1.c

2. int main()

3. {

4. int i = 54, cpid = -1;

5. cpid = fork();

6. if (cpid == -1)

7. {

8. printf (“\nFork failed\n”);

9. exit (1);

10. }

11. if (cpid == 0) //child code

12. printf (“\n Hello I am child \n”);

13. else //parent code

14. printf (“\n Hello I am parent \n”);

15. }

Using fork() & exit() system call
Parent Child

i – 54
cpid = 632

DATA
i – 54
cpid = 0

DATA

• When both will execute line 11, parent will now execute line 12 while child will
execute line 14.

Example 1 -fork() & exit()

38

//fork1.c

int main()

{

int cpid;

cpid = fork();

if (cpid == -1)

{

printf (“\nFork failed\n”);

exit (1);

}

if (cpid == 0) //child code

printf (“\n Hello I am child \n”);

else //parent code

printf (“\n Hello I am parent \n”);

}

$100 Question

39

Output- 1

Hello I am child

Hello I am parent

What will be the output of the code?

Output- 2

Hello I am parent

Hello I am child

OR

• If child process executes first and then CPU executes the parent; we will get Output-1

• If parent process executes first, it terminates and the child process become Zombie,

process init takes over control and execute the child process as its own child and we get

output similar to Output-2

fork() – Child inherits from the Parent

• The child process inherits the following attributes form

the parent:

– Environment

– Open File Descriptor table

– Signal handling settings

– Nice value

– Current working directory

– Root directory

– File mode creation mask (umask)

40

fork() – Child Differs from the Parent

• The child process differs from the parent process:

– Different PID and PPID

– Return value from fork()

– Child times for CPU usage are reset to zero

– File locks held by parent are not inherited to child

– Set of pending alarms in the parent are cleared in

the child

– Set of pending alarms in the parent are cleared in

the child

41

Main uses of fork()

1. When a process wants to duplicate itself, so that parent

& child each can execute different sections of code

concurrently. Example: Consider a network server; parent

waits for a service request from a client. When the

request arrives, parent calls fork & let the child handle

the request. Parent goes back to listen for the next

request

2. When a process wants to execute a different program.

This is common for command shells where the child does

an exec() right after it returns from the fork

42

Example 2 -fork() & exit()

43

int main(){

int cpid = fork();

if (cpid == 0)

while(1)

putchar('x');

else

while(1)

putc('o', stdout);

return 0;

}

Example 3 -fork() & exit()

44

int main(){

int cpid = fork();

if (cpid == 0)

printf("child here.\n");

else

printf("parent here.\n");

printf("who is here.\n");

return 0;

}

Example 4 -fork() & exit()

45

/*Proves that the child inherits the copy of
variables of the parent*/

int gvar=555;

int main(){

int lvar = 54;

int cpid = fork();

if (cpid == 0)

printf(”Child process PID=%ld, gvar=%d,
lvar=%d a\n", (long)getpid(),gvar, lvar);

else

printf(”Parent process PID=%ld,gvar=%d,
lvar=%d\n", (long)getpid(),gvar,lvar);

return 0;

}

Example 5 -fork() & exit()

46

/* Proves that both parent and child have their
own copy of variables*/

int main(){

int i,cpid, ctr=0;

cpid = fork();

if (cpid == 0){

ctr = 100;

for (i = 0; i< 3; i++)

printf("Child counter is:%d\n", ctr++);
}

else{

for(i = 0; i< 3; i++)

printf("Parent counter is:%d\n",ctr++);

}

return 0;

}

Example 6 -fork() & exit()

47

/* Describes what happens when fork() is called
multiple times*/

int main(){

fork();

fork();

fork();

printf("Hello fork...\n");

return 0;

}

Example 7 -fork() & exit()

48

/* Describes what happens when fork() is called
multiple times*/

int main(int argc, char *argv[]){

if(argc!=2){

printf("Must enter one int agrument\n");

exit(1);

}

int n = atoi(argv[1]);

int i;

for (i=1;i<=n;i++)

fork();

printf("PUCIT\n");

exit(0);

}

Example 8 -fork() & exit()

49

/* Describes what happens when fork() is called
multiple times*/

int main(int argc, char *argv[]){

if(argc!=2){

printf("Must enter one int agrument\n");

exit(1);

}

int n = atoi(argv[1]);

int i;

for (i=1;i<=n;i++){

fork();

}

fprintf(stderr, "%s\n","PUCIT");

exit(0);

}

Repeat above program if the fprintf() statement is inside the for loop

Example 9 -fork() & exit()

50

/* Describes what happens when fork() is called
multiple times*/

int main(){

fork() && fork();

fprintf(stderr, "%s\n","PUCIT");

return 0;

}

Orphan Processes
• If a parent has terminated before reaping its

child, and the child process is still running, then
that child is called orphan

• In UNIX all orphan processes are adopted by init
or systemd which do the reaping

51

int main(){

int cpid = fork();

if (cpid == 0){

printf("Running child, PID=%ld PPID=%ld\n",
(long)getpid(), (long)getppid());

while(1);

}

else

printf("Terminating parent, PID=%ld PPID=%ld\n",

(long)getpid(), (long)getppid());

exit(0);

return 0;

}

Zombie Processes
• Zombie Process is a process that has terminated but its parent has not collected its

exit status and has not reaped it. So a parent must reap its children

• When a process terminates but still is holding system resources like PCB and various
tables maintained by OS. It is half-alive & half-dead because it is holding resources
like memory but it is never scheduled on the CPU

• Zombies can't be killed by a signal, not even with the silver bullet (SIGKILL). The only
way to remove them from the system is to kill their parent, at which time they become
orphan and adopted by init or systemd

52

int main(){

int cpid = fork();

if (cpid == 0){

printf("Terminating child with PID = %ld\n",
(long)getpid());

exit (0);

}

else{

printf("Running parent, PID=%ld\n",(long)getpid());

while(1);

}

return 0;

}

Reaping Child Process using wait()

53

• The wait() system call is used for reaping and cleaning
zombies from system, and serves two purposes
• Notify parent that a child process finished running

• Tell the parent how a child process finished

• The parent process calls the wait() system call and
gets blocked till any one of its child terminates

• The child process returns its termination status using
the exit() call and that integer value is received by the
parent inside the status argument

• On the shell, we can check this value in the $?
environment variable

• On success, the wait() system call returns PID of the
terminated child and in case of error returns a -1

pid_t wait(int* status);

Example -fork() & wait()

54

int main(){

int cpid = fork();

if (cpid == 0){

printf("Hello I m Child.\n");

sleep(1);

printf("I m Child again, and my PID is %ld\n",
getpid());

sleep(1);

printf("I m Child again, and I am terminating...\n");

sleep(1);

exit(7);

}else{

int rv = wait(NULL);

printf ("Hello I m Parent.\n");

printf("Return value of wait is %ld, and status is
unknown\n",rv);

exit(54);

}}

$./a.out
Hello I m Child.
I m Child again, and my PID is 6867
I m Child again, and I am terminating...
Hello I m Parent.
Return value of wait is 6867, and status is unknown
$ echo $?
54

Executing a different program using exec()

55

• A process may overwrite itself with another
executable image. When a process calls one of the six
exec() functions, it is completely replaced by the new
program, and the new program starts executing its
main function

• There are five library functions of exec family and all
are layered on top of the execve() system call. Each of
these functions provides a different interface to the
same functionality

• There is no return after a successful exec call. The
exec() functions return only if an error has occurred.
The return value is -1, and errno is set to indicate the
error

int execl(char* pathname, char* arg0, ..., (char*)0);

Example 1 -fork() & execl()

56

int main(){

int cpid = fork();

if (cpid == 0){

execl(”/bin/ls", "myls", "-l", "/home/", NULL);

printf("This line will not be printed\n");

}

else{

wait(NULL);

printf("Hello I m Parent.\n");

}

return 0;

}

Example 2 -fork() & execl()

57

int main(){

int cpid = fork();

if (cpid == 0){

execl("/usr/bin/gnome-calculator", "mycalc",NULL);

printf("This line will not be printed\n");

}

else{

wait(NULL);

printf("Hello I m Parent.\n");

}

return 0;

}

How a Shell executes Commands

58

Resource	Person:	Arif	Butt	 SP	Assignment	#	03	 Page	1	of	4	

PROGRAMMING ASSIGNMENT– 03
SYSTEM PROGRAMMING – CS 321

	

Creating UNIX Shell (100 mks)	
Problem	Statement	
The	purpose	of	this	assignment	is	to	give	you	practice	in	the	use	of	UNIX	system	calls	and	writing	a	command	interpreter	on	top	
of	UNIX.	The	Shell	as	described	by	Richard	Stevens	in	his	book	Advanced	Programming	in	the	UNIX	environment	is	a	command-
line	interpreter	that	reads	user	input	and	execute	commands.	For	some	it	is	a	user	interface	between	user	and	the	internals	of	
operating	system	whose	job	is	to	intercept	user’s	command	and	then	trigger	system	calls	to	ask	OS	to	accomplish	the	user’s	
tasks.	For	me	it	is	a	program	executing	another	program.	

A	shell	mainly	consists	of	two	parts:	parsing	user	requests	and	accomplishing	user	request	with	system	call’s	help.	In	this	
assignment	you	will	write	your	own	command	shell	to	gain	experience	with	some	advanced	programming	techniques	like	
process	creation	and	control,	file	descriptors,	signals,	I/O	redirection	and	pipes.	You	will	do	increment	programming	and	develop	
different	version	of	your	own	UNIX	shell	whose	specifications	are	mentioned	in	the	following	paragraphs.	A	simple	flow	chart	of	
the	expected	shell	is	given	below:	
	

	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	

	

Process Resource Limits

59

• Every process has as set of resource limits that can be
used to restrict the amounts of various systems
resources that the process may consume

• We can set the resource limits of the shell using the
ulimit built-in command. These limits are inherited by
the processes that the shell creates to execute user
commands

• In Linux kernel, the /proc/PID/limits file can be used
to view all of the resource limits of any process

• The ulimit is an internal command that provides control
over the resources available to the shell and to
processes started by it. See man pages for details

• To display various limits
$ ulimit -a

Process Resource Limits

60

Hard and Soft Limits:
• A hard limit is the upper limit that the user can never,

ever go beyond. Say you set a hard limit of 255 processes
per user. No one of the users can exceed that limit, ever

• The soft limit, on the other hand, is a “warning” limit. It
tells the user and the system admin that you are close to
reach the danger level, which is the hard limit. Users are
allowed to go over the soft limit, unlike the hard limit

• Regular users can increase their soft limits up to
the current hard limit, but can’t exceed that. They
can decrease their soft limits to zero

• Regular users can also decrease their hard limits to zero,
but they can’t increase them

• The root is, as always, god of the system, and so can do
whatever (s)he likes with both soft and hard limits

Process Resource Limits

61

• To display stack size of a process
$ ulimit –s

8192

$ ulimit –Ss

8192

$ ulimit –Hs

unlimited

• To display maximum number of open files that a process
can open at any instant of time

$ ulimit –n

1024

$ ulimit –Sn

1024

$ ulimit –Hn

4096

Accessing System Configurations

62

• To query different system configuration variables (kernel
variables mostly defined in limits.h), we can use the command
getconf

• To display all configuration variables and their current value
$ getconf -a

• To query maximum file name support
$ getconf NAME_MAX

• To query maximum number of child processes that may be owned
by a process simultaneously

$ getconf CHILD_MAX

• To query min/max ranges of various data types
$ getconf UCHAR_MAX

$ getconf CHAR_MAX

$ getconf CHAR_MIN

SUMMARY

63

We’re done for now, but
Todo’s for you after this
lecture…

64

If you have problems visit me in counseling hours. . . .

• Go through the slides and Book Sections: 3.1 to 3.3

• Go through Unix The Text Book Chapter 13

• Type, compile, execute, and understand the programs on
the slides and also the programs discussed in class

• Start making your hands dirty before you get your First
Programming Assignment

