
CMP325
Operating Systems
Lecture 09, 10, 11

CPU Scheduling Algorithms

Fall 2021
Arif Butt (PUCIT)

Note:
Some slides and/or pictures are adapted from course text book and Lecture slides of
• Dr Syed Mansoor Sarwar
• Dr Kubiatowicz
• Dr P. Bhat
• Dr Hank Levy
• Dr Indranil Gupta

For practical implementation of operating system concepts discussed in these slides,
students are advised to watch and practice video lectures on the subject of OS with
Linux by Arif Butt available on the following link:
http://www.arifbutt.me/category/os-with-linux/

http://www.arifbutt.me/category/os-with-linux/

Today’s Agenda
• Review of previous Lecture

• Process Scheduler & Dispatcher

• Preemptive vs Non-Preemptive Scheduler

• CPU Scheduling and Scheduling Criteria

• Scheduling Algorithms
• FCFS Scheduling

• SJF & SRTF Scheduling

• Priority Scheduling

• Round Robin Scheduling

• MQ & MFQ Scheduling

• Rotating Staircase Dead Line Scheduling

• SVR3 Scheduling

• Changing Scheduling parameters on a Linux Shell2

Scheduling

3

• Deciding which process/thread should
occupy a resource (CPU, disk, etc.)

(CPU (horsepower))

Process 1 Process 2 Process 3

I want
to ride

it

Whose turn is it?

CPU – I/O Burst Cycle
•Process execution consists of a
cycle of CPU execution and
I/O wait

•Processes move back & forth
between these two states

•A process execution begins
with a CPU burst, followed by
an I/O burst and then another
CPU burst and so on

4

Scheduling
• Scheduling is a matter of managing queues to minimize

queueing delay and to optimize performance in a queueing

environment

• We have already discussed three types of schedulers in

the previous lectures:

• Long term scheduler

• Medium term scheduler

• Short term scheduler

• A short term scheduler is also called process scheduler

or CPU scheduler. When CPU becomes idle the OS must

select one of the processes from the Ready Queue to be

executed by the CPU

5

CPU Scheduler
• CPU Scheduler is a kernel component that decides which

process runs when and for how long.

• CPU scheduling decisions may take place when a process:

1. Switches from running to waiting state

2. Terminates

3. Switches from running to ready state. (e.g. when time

slice of a process expires or an interrupt occurs)

4. Switches from waiting to ready state. (e.g. on

completion of I/O)

5. On arrival of a new process

6

Dispatcher
• Dispatcher is an important component involved in CPU
scheduling

• The OS code that takes the CPU away from the current
process and hands it over to the newly scheduled
process is known as the dispatcher

• Dispatcher gives control of the CPU to the process
selected by the short-term scheduler

• Dispatcher performs following functions:
• switching context
• switching to user mode
• jumping to the proper location in the user program to
restart that program

•Dispatch latency – time it takes for the dispatcher to
stop one process and start executing another

7

In Pre-emptive scheduling the scheduler decides
when a process is to cease running and a new
process is to begin running. The duration a process
executes, before it is preempted is usually fixed
and is called the time slice of that process. On
many modern OSs, the time slice is dynamically
calculated as a function of process behavior and
configurable system policy.

In Non-preemptive Scheduling, the running process
can only lose the processor voluntarily by
terminating or by requesting an I/O. OR, Once CPU
given to a process it cannot be preempted until the
process completes its CPU burst

Main Categories of Process Schedulers

8

Preemptive vs Non Preemptive Kernels

9

Scheduling Objectives

10

• Fairness (nobody cries)

• Priority (ladies first)

• Efficiency (make best use of equipment)

• Encourage good behavior (good boy/girl)

• Support heavy loads (degrade gracefully)

Scheduling Criteria
• CPU utilization – keep the CPU as busy as possible

• Throughput – # of processes that complete their execution
per time unit

• Waiting time – amount of time a process has been waiting in
the ready queue

• For Non preemptive Algos = S.T – A.T
• For Preemptive Algos = F.T – A.T – B.T

• Turnaround time – amount of time to execute a particular
process.

• W.T to get into memory + W.T in Ready Q + Execution time + I/O time
• (FinishTime – Arrival Time)

• Response time – amount of time it takes from when a request
was submitted until the first response is produced, not output
(for time-sharing environment)

11

Optimization Criteria

•Max CPU utilization

•Max throughput

•Min turnaround time

•Min waiting time

•Min response time

12

Classification of Processes

13

Classification of Processes

14

There are two more classifications of our interest when
talking about scheduling algorithms:

• CPU bound processes: These processes spend
more time doing computation and try to hold CPU
for longer durations, e.g., image processing
applications, network traffic simulators

• I/O bound processes: These processes spend
more time doing I/O and try to hold I/O devices
for longer durations, e.g., text editors, printing
application like billing system

These two classifications are not mutually exclusive, a
process can exhibit both behaviors. For example, a word
processor (an I/O bound process) can become CPU
bound when doing spell checking or macro calculations.

First Come First Serve

15

• Process that requests the CPU FIRST is allocated
the CPU FIRST

• Called “FIFO”, Non-preemptive, Used
in Batch Systems

• Real life analogy: Any ticket counter
• Implementation: FIFO queues

– A new process enters the tail of the queue
– The scheduler selects from the head of the queue.

• Performance Metric: Average Waiting Time (AWT)
• Given Parameters:

– Burst Time (in ms), Arrival Time and Order
– Can be generalized to processes with alternate CPU and I/O

bursts: blocking process goes to queue’s tail

First Come First Serve (cont…)
• Simplest CPU scheduling algorithm

• Non preemptive

• The process that requests the CPU first is allocated the CPU
first

• Implemented with a FIFO queue. When a process enters the
Ready Queue, its PCB is linked on to the tail of the Queue.
When the CPU is free it is allocated to the process at the
head of the Queue

• Limitations
• FCFS favor long processes as compared to short ones.
(Convoy effect)

• FCFS tends to favor processor bound processes over I/O
bound processes

• Average waiting time is often quite long
• FCFS is non-preemptive, so it is trouble some for time
sharing systems

16

Convoy Effect

17

• Consider n-1 jobs in system that are I/O bound and 1 job
that is CPU bound

• I/O bound jobs pass quickly through the ready queue and
suspend themselves waiting for I/O

• CPU bound job arrives at head of queue and executes until
complete

• I/O bound jobs rejoin ready queue and wait for CPU bound
job to complete

• I/O devices idle until CPU bound job completes

• When CPU bound job completes, other processes rush to
wait on I/O again

• CPU becomes idle
“A convoy effect happens when a set of processes need to use a resource for a

short time, and one process holds the resource for a long time, blocking all of
the other processes. Causes poor utilization of the other resources in the

system”

FCFS – Example 1

Process Duration/B.T Order Arrival Time

P1 24 1 0

P2 3 2 3

P3 4 3 4

18

The final schedule:

0

P1 (24)

24 27

P2 (3) P3 (4)

P1 waiting time: 0-0
P2 waiting time: 24-3
P3 waiting time: 27-4

The average waiting time:
(0+21+23)/3 = 14.667

FCFS – Example 2

• Draw the graph (Gantt chart) and compute average

waiting time for the following processes using FCFS

Scheduling algorithm.

Process Arrival time Burst Time

P1 1 16

P2 5 3

P3 6 4

P4 9 2

19

SJF & SRTF Scheduling…
• When the CPU is available it is assigned to the process that
has the smallest next CPU burst

• If two processes have the same length next CPU bursts,
FCFS scheduling is used to break the tie

Comes in two flavors

• Shortest Job First (SJF)
• It’s a non preemptive algorithm. When a new process arrives

having a shorter next CPU burst than what is left of the
currently executing process, it allows the currently running
process to finish its CPU burst

• Shortest Remaining Time First (SRTF)
• It’s a Preemptive algorithm. When a new process arrives having

a shorter next CPU burst than what is left of the currently
executing process, it preempts the currently running process

20

SJF Example 3

Process Duration/B.T Order Arrival Time

P1 6 1 0

P2 8 2 0

P3 7 3 0

P4 3 4 0

21

0 3

P4 (3) P1 (6)

9

P3 (7)

16

P4 waiting time: 0-0
P1 waiting time: 3-0
P3 waiting time: 9-0
P2 waiting time: 16-0

The total running time is: 24
The average waiting time (AWT):
(0+3+9+16)/4 = 7 time units

P2 (8)

24

SRTF Example 4

Process Duration Order Arrival Time

P1 10 1 0

P2 2 2 2

22

P1 waiting time: 4-2 =2
P2 waiting time: 0

The average waiting time (AWT):
(0+2)/2 = 1

Now run this using SJF!

0 122

P1 (8)P2 (2)

4

P1 (2)

SJF & SRTF – Example 5
Draw the graph (Gantt chart) and compute waiting time and turn
around time for the following processes using SJF & SRTF
Scheduling algorithm. For SJF consider no arrival time and
consider all processes arrive at time 0 in sequence P1, P2, P3, P4.

Process Arrival Time Burst Time

P1 0 8

P2 1 4

P3 2 9

P4 3 5

NOTE: For pre emptive algos, we calculate Turn Around Time. Whenever a process enters
Ready Queue more than once we use turn around time instead of waiting time.
❑For non-emptive algo: Waiting time = Start time – Arrival time
❑For preemptive algo: Waiting time = Finish time – Burst time – ArrivalTime
❑Turn around time = Finish time – Arrival time

23

SJF & SRTF – Example 6
Draw the graph (Gantt chart) and compute waiting time
and turn around time for the following processes using
SJF & SRTF Scheduling algorithm.

Process Arrival Time Burst Time

P1 0 5

P2 1 2

P3 2 3

P4 3 1

24

SJF & SRTF – Example 7
Draw the graph (Gantt chart) and compute waiting time
and turn around time for the following processes using
SJF & SRTF Scheduling algorithm.

Process Arrival Time Burst Time

P1 0 9

P2 3 6

P3 6 2

P4 9 1

25

SJF & SRTF Scheduling
$100 QUESTION

How to compute the next CPU burst?

• This algorithm cannot be implemented at the level of
short-term CPU scheduling. There is no way to know the
length of the next CPU burst

• One approach is to try to approximate. We may not know
the length of the next CPU burst, but we may be able to
predict its value. We expect that the next CPU burst will
be similar in length to the previous ones. Thus, by
computing an approximation of the length of the next CPU
burst, we can pick the process with the shortest predicted
CPU burst

26

SJF & SRTF Scheduling…
Exponential Averaging

27

Estimation based on historical data

tn = Actual length of nth CPU burst

n = Estimate for nth CPU burst

n+1 = Estimate for n+1st CPU burst

, 0 ≤ ≤1

n+1 = tn + (1-) n

Exponential Averaging…
n+1 = tn + (1-) n

• Plugging in value for n, we get

n+1 = tn + (1-)[tn-1 + (1-)n-1]

n+1 = tn + (1-)tn-1 + (1-)2n-1

• Again plugging in value for n-1, we get

n+1 = tn + (1-)tn-1 + (1-)2[tn-2 + (1-)n-2]

n+1 = tn + (1-)tn-1 + (1-)2 tn-2 (1-)3n-2

• Continuing like this results in

n+1 = tn+ (1 -) tn-1 + …+ (1 -)j tn-j + … + (1 -)n+1 0

28

Exponential Averaging…

Lets take two extreme values of

If = 0
n+1 = n

Next CPU burst estimate will be exactly equal to previous CPU burst estimate.

If = 1
n+1 = tn

Next CPU burst estimate will be equal to previous actual CPU burst.

29

n+1 = tn + (1-) n

Exponential Averaging…

Typical value used for is ½. With this value, our
(n+1)st estimate is

Note that as we move back in time we are giving
less weight-age to the previous CPU bursts. Older
histories are given exponentially less weight-age

30

n+1 = tn/2 + tn-1/2
2 + tn-2/2

3 + tn-3/2
4 + …

n+1 = tn+ (1 -) tn-1 + …+ (1 -)j tn-j + … + (1 -)n+1 0

Priority Scheduling
• A priority number (integer) is associated with each process
and the CPU is allocated to the process with the highest
priority (smallest integer highest priority)

• A priority scheduling algorithm can be preemptive or non
preemptive

• A Preemptive priority scheduling algorithm will preempt the CPU
if the priority of the newly arrived process is higher than the
priority of the currently running process. E.g. SRTF is a priority
scheduling algorithm where priority is the predicted next CPU
burst time

• A Non preemptive priority scheduling algorithm will simply put
the new process at the tail of the Ready Queue

• Problem Starvation / Indefinite Blocking; i.e. Low priority
processes may never execute

• Solution Aging; It is a technique of gradually increasing the
priority of processes that wait in the system for long time

31

Priority Scheduling – Example 8

Process Duration Priority # Arrival Time

P1 6 4 0

P2 8 1 0

P3 7 3 0

P4 3 2 0

32

0 8

P4 (3) P1 (6)

11

P3 (7)

18

P2 waiting time: 0
P4 waiting time: 8
P3 waiting time: 11
P1 waiting time: 18

The average waiting time (AWT):
(0+8+11+18)/4 = 9.25

(worse than SJF’s)

P2 (8)

24

Lower priority # == More important

Round Robin (RR) Scheduling
• RR is preemptive and designed especially for time sharing systems.

• A clock interrupt is generated at periodic intervals called time
quantum or time slice.

• To implement RR scheduling, we keep the ready queue as a FIFO
queue of processes. New processes are added to the tail of the
ready queue. The CPU scheduler picks the first process, sets a
timer to interrupt after 1 time quantum, and dispatches the
process.

• One of two things will then happen. The process may have a CPU
burst of less than 1 time quantum. In this case, the process itself
will release the CPU voluntarily. The scheduler will then proceed to
the next process in the ready queue. Otherwise, if the CPU burst
of the currently running process is greater than 1 time quantum;
the timer will go off and will cause an interrupt to the operating
system. A context switch will be executed, and the process will be
put at the tail of the ready queue. The CPU scheduler will then
select the next process from the ready queue.

33

Round Robin (RR) Scheduling…

• The performance of the RR algorithm depends heavily on the

size of the time quantum. Principal design issue in the length

of the time quantum to be used are:

• If the time quantum is very large (larger than the largest

CPU burst of any process), the RR policy become the FCFS

policy.

• If the time quantum is very short, the RR approach is

called processor sharing. Short processes will move

through the system relatively quickly.

34

Limitation
• Processor bound processes tend to receive an unfair portion of

processor time, which result in poor performance of I/O bound
processes.

Effect of context switching on the performance of RR scheduling
• Let us assume that we have only 1 process of 10 time units. If the

quantum is 12 time units, the process finishes in less than 1 time
quantum, with no overhead. If the quantum is 6 time units,
however, the process will require 2 quanta, resulting in a context
switch. If the time quantum is 1 time unit, then 9 context
switches will occur, slowing the execution of the process
accordingly.

• Thus, the time quantum should be large with respect to the
context switch time. If the context switch time is approximately
5 percent of the time quantum, then about 5 percent of the CPU
time will be spent in context switching.

Round Robin (RR) Scheduling (cont..)

35

RR – Example 9
Draw the graph (Gantt chart) and compute turn
around time for the following processes using RR
Scheduling algorithm. Consider a time slice of 4
sec.

Process Arrival Time Burst Time
P1 0 16
P2 1 3
P3 2 3

36

RR – Example 10
Draw the graph (Gantt chart) and compute turn around
time for the following processes using RR Scheduling
algorithm. Consider a time slice of 3 sec

Process Arrival Time Burst Time

P1 0 8

P2 2 4

P3 3 2

P4 6 5

NOTE: Priority of placing a process in Ready Queue
• New Process.
• Running Process.

37

RR with I/O – Example 11
Draw the graph (Gantt chart) and compute turn around time for the

following processes using RR Scheduling algorithm. Consider a time

slice of 3 sec. Every even number process perform I/O after every 2

sec of its running life. I/O takes 10 seconds.

Process Arrival Time Burst Time

P1 0 8

P2 2 3

P3 3 5

P4 6 4

NOTE: Priority of placing a process in Ready Queue

• New Process.

• Blocked Process or I/O process.

• Running Process.

38

RR with I/O – Example 12
Draw the graph (Gantt chart) and compute turn around

time for the following processes using RR Scheduling

algorithm. Consider a time slice of 3 sec. Every odd

number process perform I/O after every 2 sec of its

running life. I/O takes 10 seconds.

Process Arrival Time Burst Time

P1 0 8

P2 2 3

P3 3 5

P4 6 4

39

RR with I/O – Example 13
Schedule the following processes using RR. The processes P1, P2 and
P3 have arrived at time units 0, 1 and 2 respectively. The process P1
demands CPU for 3 time quantum before going for I/O for 6 time
quantum, then again demand CPU for 2 quantum and then goes for
I/O for 4 quantum and finally demand CPU for 4 CPU quantum before
it terminate. Assume RR time slice of 4 time units.

40

Multilevel Queue Scheduling
• A multilevel queue scheduling algorithm partitions the
Ready Queue into several separate queues:

• Foreground (interactive)
• Background (batch)

• Processes are permanently assigned to a queue on entry to
the system (based on some property of the process, e.g.
memory size, process priority, process type).

• Processes do not move between queues.

• Each queue has its own scheduling algorithm,
• Foreground – RR
• Background – FCFS

• More over there must be scheduling between the queues.
E.g. foreground queue may have absolute priority over back
ground queue.

41

Multilevel Queue Scheduling

42

MQ Scheduling – Example 14
Draw the graph (Gantt chart) for the following processes
using MQ Scheduling algorithm.
If (CPU time < 4) then Q1 (FCFS)
else if (4 <= CPU time < 7) then Q2 (FCFS)
else Q3 (FCFS)
Process Arrival Time Burst Time
P1 0 8
P2 2 2
P3 3 4
P4 5 6
P5 7 9
P6 9 3
P7 10 5

43

MQ Scheduling – Example 15
Draw the graph (Gantt chart) for the following processes
using MQ Scheduling algorithm.
If (CPU time < 4) then Q1 (FCFS)
else if (4 <= CPU time < 7) then Q2 (RR – 3sec)
else Q3 (FCFS)

Process Arrival Time Burst Time

P1 0 8

P2 2 2

P3 3 4

P4 5 6

P5 7 9

P6 9 3

P7 10 5

44

Multilevel Feedback Queue (MFQ) Scheduling
• Multilevel feed back queue scheduling allows a process to move

between various queues.

• Processes that uses too much CPU time is moved to a lower priority
queue thus leaving the interactive and I/O bound processes in the
higher priority queue.

• Similarly Aging can be done to prevent starvation i.e. the processes
that waits too long in the lower priority queue are moved to a
higher priority queue.

• Parameters of a Multilevel-feedback-queue scheduler are:
• Number of queues
• Scheduling algorithms for each queue
• Method used to determine when to upgrade a process
• Method used to determine when to demote a process
• Method used to determine which queue a process will enter

when that process needs service

45

Multilevel Feedback Queues

46

MFQ Scheduling – Example 16

Draw the graph (Gantt chart) for the following processes
using MFQ Scheduling algorithm.

Q1 - RR - 8 sec

Q2 - RR - 16 sec

Q3 - FCFS

Process Arrival Time Burst Time

P1 1 10

P2 5 8

P3 8 22

P4 12 16

P5 15 30

47

Rotating Staircase Dead Line Scheduler
(RSDL)

•This scheduler uses multilevel queues. Each process
has a quota of time it is allowed to execute at a
particular level. Once a process has consumed its
quota at a given priority level, it is dropped down to
the next priority queue and given a new quota. As a
process move down the stair case it has to contend
with the lower priority processes who are patiently
waiting on the lower levels. Each priority level has
also a quota of its own. Once highest priority level
has used its quota, all processes running at that
level are pushed down to next lower level regardless
of whether the process have consumed their
individual quotas or not. So there is no starvation in
this scheduler

48

UNIX SVR3 Scheduling Algorithm

49

Run Queue 0

Run Queue 1

Run Queue 2

Run Queue 31

usrprij (i) = Basej + cpuj (i) + nicej

Where Basej = 50

cpuj (i) = DR * cpuj (i-1)

nicej = -20 to +19

0 – 3

4 – 7

8 – 11

124 – 127

 128 Priority values

 0–49: Kernel

 50–127: User level programs

•The Traditional UNIX scheduler employs thirty-two
multi-level feed back queues implementing round
robin algorithm with a fixed time quantum of 100 ms

•There are total of 128 different priority values, 0
to 49 for kernel processes and rest for user level
programs. Four priority values are mapped on each
queue

•A process enters in an appropriate queue based on
its priority value, which is computed by a formula
and is recomputed every second (not inherited)

•When it comes to scheduling the process in the
smallest priority number queue is selected. After
every second, the priorities of all the processes are
recalculated and they are promoted or demoted in
the queues accordingly

UNIX SVR3 Scheduling Algorithm (…)

50

• The priority of a process is calculated as the sum of three
terms as shown in the formula:

usrprij(i) = Basej + CPUj(i) + nicej

• Basej means base value for process j, which differentiate
between user and kernel priorities. For user processes its
value is 50-127, while for kernel processes its value is 0-49

• CPUj(i), means the CPU utilization of process j through
interval i. It is calculated by multiplying the previous cpu
utilization with a decay rate. In SVR3 the decay rate is ½

• The nice value (a per process attribute) is a user controllable
adjustment factor. It is called nice because a process
increases its nice value and in turn reduces its priority and
show nice behavior to other processes by giving them the
opportunity to run. A user can change the nice value of a
process by nice(1) and renice(1) commands. The nice
values range from -20 to 19 with a default value of 0

UNIX SVR3 Scheduling Algorithm (…)

51

Limitations

•With large number of processes, overhead of re-
computing process priorities every second is very
high

•Since the kernel itself is non-preemptive, high
priority processes may have to wait for low priority
processes executing in kernel mode

UNIX SVR3 Scheduling Algorithm (…)

52

Changing Priority of Processes: nice(1)

53

•When a process is executed (e.g., by the shell), it
inherits the nice value of its parent. (default nice
value is zero)

•If you want to execute a process with a different
nice value, use following command
$ nice -val cmd [args]

•You need to be root if you want to run a process
with a nice value of less than zero

•If you want to change the nnice value of an already
runninng process, use following command

$ renice val <PID>

Use above commands to and check the impact of nice value on the priority of a
process using the ps –l command

CPU Affinity

54

• In a multi-processor / multi-core system, when a process is
rescheduled, it does not necessarily run on the same CPU on
which it ran previously

• If a process moves from one CPU to the other, the cache of
the first CPU must be invalidated and the cache of the
second CPU must be populated with the process data

• To achieve performance gains in cache optimization the
concept of CPU affinity is introduced in Linux Kernel

• Scheduler in today’s Linux Kernel (CFS) tries to ensure soft
CPU affinity, i.e., tries to run the task on the same CPU on
which it ran previously

• We can ensure hard CPU affinity using a per process
attribute cpus_allowed, which is a 32 bit mask having one bit
per CPU or core in the system

• When a process is created it inherits the affinity mask of its
parent, later a process can change it using schedtool(1)

Schedtool

55

Schedtool

56

Schedtool

57

Schedtool

58

Schedtool

59

Schedtool

60

Evaluation of Scheduling Algorithms

•Deterministic Modeling

•Queuing Model

•Simulation

•Implementation

61

COMING SOON

SCHEDULING ALGORITHMS

62

We’re done for now, but
Todo’s for you after this
lecture…

63

If you have problems visit me in counseling hours. . . .

• Go through the slides and Book Sections: 5.1 to 5.3, 5.7

• Practice sample problems discussed and solved in class.

• Assignment for Scheduling Algorithms will be uploaded

soon, start doing it at your earliest to get it done by

the given dead line.

