
CMP325
Operating Systems

Lecture 12

Introduction to Synchronization

Fall 2021
Arif Butt (PUCIT)Note:

Some slides and/or pictures are adapted from course text book and Lecture slides of
• Dr Syed Mansoor Sarwar
• Dr Kubiatowicz
• Dr P. Bhat
• Dr Hank Levy
• Dr Indranil Gupta

For practical implementation of operating system concepts discussed in these slides,
students are advised to watch and practice video lectures on the subject of OS with
Linux by Arif Butt available on the following link:
http://www.arifbutt.me/category/os-with-linux/

http://www.arifbutt.me/category/os-with-linux/

Today’s Agenda
• Review of Previous Lecture

• What is Synchronization

• Concurrency Control
– Producer Consumer Example

– Deposit With Drawl Example

– Spooling Example

• Race Conditions and Critical Section Problem

• Characteristics of Good CS Problem Solution

• A Comprehensive Example (Too much Milk)

Introduction to Synchronization
• In Real Life: synchronization means making two things

happen at the same time.

• In CS: synchronization refers to relationships among
events, e.g. before, during and after.

• Synchronization Constraints:

• Serialization: Event A must happen before event B.

• Mutual Exclusion: Event A and B must not happen at the
same time.

• In Real Life: we often check and enforce synchronization
constraints using a clock (i.e. by comparing times).

• In CS: we can’t use clocks (due to distributed
environments) because most of the time the computer does
not keep track of what time things happen, as there are too
many things happening, too fast, to record the exact time
of every thing.

Introduction to Synchronization(…)
• If computers execute one instruction after another in

sequence; the synchronization (serialization and ME) is
trivial. If statement A comes before statement B, it will be
executed first.

• Problems

• In case of multiple CPUs, it is not easy to know if a
statement on one CPU is executed before a statement
on another.

• In case of uni-Processor but multi threaded system, the
programmer has no control over when each thread runs,
the scheduler makes those decisions.

• Concurrent programs are often non deterministic, which
means it is not possible to tell, by looking at the program,
what will happen, when it executes.

• Example.
“Two events are concurrent if we cannot tell by looking at the program which will happen first”

Example- Concurrent Program
#define BUFFER_SIZE 5

typedef struct{ ---- } item;

item buffer[BUFFER_SIZE];

int in = 0; //points to location where next item will be placed, will

be used by producer process

int out = 0; //points to location from where item is to be consumed,

will be used by consumer process

int ctr = 0;

Producer Process

item nextProduced;

while(1)

{

nextProduced = getItem();

while(ctr == BUFFER_SIZE)

; //do nothing

buffer[in] = nextProduced;

in = (in + 1) % BUFFER_SIZE;

ctr++; }

Consumer Process

item nextConsumed;

while(1)

{

while(ctr == 0)

; //do nothing

nextConsumed = buffer[out];

out = (out + 1) % BUFFER_SIZE;

ctr--;

}

6

void * inc(void * arg){

for(long i=0;i<100000000;i++)

balance++;

pthread_exit(NULL);

}

Example (Race Condition)
long balance = 0;

void * inc(void * arg);

void * dec(void * arg);

int main(){

pthread_t t1, t2;

pthread_create(&t1, NULL, inc,NULL);

pthread_create(&t2, NULL, dec,NULL);

pthread_join(t1,NULL); pthread_join(t2,NULL);

printf("Value of balance is :%ld\n", balance);

return 0;

}

void * dec(void * arg){

for(long i=0;i<100000000;i++)

balance--;

pthread_exit(NULL);

}

Concurrency Control
• We have just seen that cooperating processes (e.g.

Producer Consumer Process) need to access

common data; e.g. buffer or ctr.

• Concurrent access to shared data may result in

data inconsistency. (HOW?)

• Concurrency control is a mechanism using which

multiple processes can access shared data w/o

any conflict.

Example 1-Producer Consumer Problem

ctr++;
P1: MOV R1, ctr

P2: INC R1

P3: MOV ctr, R1

• In the solution of Producer Consumer Problem on previous slide, ctr is
a shared variable that is used by both the producer and the consumer
process to check whether the buffer is full or empty.

• In Producer and Consumer the single instruction of ctr++ and ctr-- can
be written in Assembly as

ctr--;
C1: MOV R2, ctr

C2: DEC R2

C3: MOV ctr, R2

• Suppose both instrs execute concurrently and assume that the value of
ctr is 5 before the execution of above instructions.

• Interleaving. One possible interleaving of the above statements is:

• P1, P2 , C1, C2, P3 , C3. With this sequence of interleaving, the final
value of ctr will be 4, where as the actual result should have been 5.

• What is the final result if the interleaving sequence is P1, P2 , C1, C2,
C3 , P3?

• If Consumer runs last -> ctr = 4.

• If Producer runs last -> ctr = 6.

Example 2-Deposit and Withdrawl

Deposit
D1: MOV R1, balance

D2: ADD R1, depositAmount

D3: MOV balance, R1

• Consider a Bank Transaction. The Deposit Process deposits a
particular amount in the bank via a cheque. The Withdrawl Process
withdraws a particular amount from the bank via ATM.

• In Deposit and Withdrawl process the instruction that updates the
balance variable can be written in Assembly as

Withdrawl
W1: MOV R2, balance

W2: SUB R2, wdrAmount

W3: MOV balance, R2
Sample Transaction

Current Balance: 100/-

Cheque deposited: 25/-

ATM with drawl: 10/-

• Interleaving. One possible interleaving of the above statements is:

• D1, D2 , W1, W2, D3 , W3. With this sequence of interleaving, the
final value of balance will be 90/-

• What is the final result if the interleaving sequence is D1, D2 , W1,
W2, W3 , D3?

Important Concepts
• Race Condition:The situation where several

threads/cooperating processes are updating some
shared data concurrently and the final value of the
data depends on which thread finishes last

• Critical Section: A piece of code in
threads/cooperating processes in which the
threads may update some shared data (variable,
file, database)

• Critical Section Problem. If multiple threads
try to execute their CS simultaneously, we need to
execute them one by one completely

Important Concepts (cont…)
• To understand a concurrent program, we need to know

what the underlying indivisible operations are!

• Atomic Operation: An operation that always runs to

completion or not at all

– It is indivisible: it cannot be stopped in the middle and state cannot

be modified by someone else in the middle

– Fundamental building block – if no atomic operations, then have no

way for threads to work together

• On most machines, memory references and assignments

(i.e. loads and stores) of words are atomic

• Many instructions are not atomic

– Double-precision floating point store are often not atomic

– VAX and IBM 360 had an instruction to copy a whole array

Structure of CS Solution

do {

ENTRY SECTION

<CS> //Access shared variables

EXIT SECTION

<RS> //Do other work

}while(1);

Characteristics of Good CS Problem Solution

1. Mutual Exclusion. If a process is executing in
its CS, no other cooperating processes can
execute in their CS

2. Progress. If no process is executing in its CS
and some processes wish to enter in their CS, two
things need to happen:

• No process in <RS> should participate in the
decision

• This decision has to be taken in a finite time

Characteristics of Good CS Problem Solution
3. Bounded Waiting. If a process has

requested to enter in its CS, a bound must
exist on the number of times that other
processes are allowed to enter in their CS,
before the request is granted.
• Example.

• Consider three processes P1, P2 and P3; Suppose P2
has made a request to enter its CS.

• Let the bound is set to 1.

• Now if P1 and P3 also request to enter their CS they
can be allowed only once.

• Before giving them a second chance P2, should be
given a chance to go to its CS.

Synchronization Example

Too Much Milk

15

“Too much milk”
• Great thing about OS’s – analogy between

problems in OS and problems in real life
– Help you understand real life problems better

– But, computers are much stupider than people

• Example: People need to coordinate:

Arrive home, put milk away3:30

Buy milk3:25

Arrive at storeArrive home, put milk away3:20

Leave for storeBuy milk3:15

Leave for store3:05

Look in Fridge. Out of milk3:00

Look in Fridge. Out of milkArrive at store3:10

Person BPerson ATime

Too much Milk (cont…)
• Lock: Prevents someone from doing something

– Lock before entering critical section and
before accessing shared data

– Unlock when leaving, after accessing shared data

– Wait if locked
Important idea: all synchronization involves waiting

• For example: Lets fix the milk problem by putting a
key on the refrigerator
– Lock it and take key if you are going to go buy milk

– Fixes too much: roommate angry if only wants cold water

Too much Milk-Solution # 1
• Use a note to avoid buying too much milk:

– Leave a note before buying (kind of “lock”)

– Remove note after buying (kind of “unlock”)

– Don’t buy if note (wait)

• Suppose a computer tries this (remember, only memory read/write are
atomic):

if (noMilk) {
if (noNote) {

leave Note;
buy milk;
remove note;

}
}

• Result?
– Still too much milk but only occasionally! (HOW?)

– Thread can get context switched after checking milk and note but before buying milk!

• Solution makes problem worse since fails intermittently

– Makes it really hard to debug…

– Must work despite what the dispatcher does!

Too much Milk-Solution # 1 ½
• Clearly the Note is not quite blocking enough

– Let’s try to fix this by placing note first

• Another try at previous solution:

leave Note;
if (noMilk) {

if (noNote) {
leave Note;
buy milk;

}
}
remove note;

• What happens here?
– Well, with human, probably nothing bad
– With computer: no one ever buys milk

Too much Milk-Solution # 2
• How about labeled notes?

– Now we can leave note before checking

• Algorithm looks like this:
Thread A Thread B

leave note A; leave note B;
if (noNote B) { if (noNoteA) {

if (noMilk) { if (noMilk) {
buy Milk; buy Milk;

} }
} }
remove note A; remove note B;

• Does this work?
• Possible for neither thread to buy milk

– Context switches at exactly the wrong times can lead
each to think that the other is going to buy

• Really insidious:
– Extremely unlikely that this would happen, but will at

worse possible time

Too much Milk-Solution # 2: Problem

• I’m not getting milk, You’re getting milk

• This kind of lockup is called “starvation!”

Too much Milk-Solution # 3
• Here is a possible two-note solution:

Thread A Thread B

leave note A; leave note B;
while (note B) { //X if (noNote A) { //Y

do nothing; if (noMilk) {
} buy milk;
if (noMilk) { }

buy milk; }
} remove note B;
remove note A;

• Does this work?

• Yes.

• At X:

– if no note B, safe for A to buy,

– otherwise wait to find out what will happen

• At Y:

– if no note A, safe for B to buy

– Otherwise, A is either buying or waiting for B to quit

Discussion-Solution # 3
• Our solution protects a single “Critical-Section” piece

of code for each thread:
if (noMilk) {

buy milk;
}

• Solution #3 works, but it’s really unsatisfactory
– Really complex – even for this simple an example

• Hard to convince yourself that this really works

– A’s code is different from B’s – what if lots of threads?
• Code would have to be slightly different for each thread

– While A is waiting, it is consuming CPU time
• This is called “busy-waiting”

• There’s a better way
– Have hardware provide better (higher-level) primitives than

atomic load and store
– Build even higher-level programming abstractions on this

new hardware support

Too much Milk-Solution # 4
• Suppose we have some sort of implementation of a lock (more in a

moment).

– Lock.Acquire() – wait until lock is free, then grab

– Lock.Release() – Unlock, waking up anyone waiting

– These must be atomic operations – if two threads are waiting for the
lock and both see it’s free, only one succeeds to grab the lock

• Then, our milk problem is easy:

milklock.Acquire();

if (nomilk)

buy milk;

milklock.Release();

• Once again, section of code between Acquire() and Release()
called a “Critical Section”

• Of course, you can make this even simpler: suppose you are out of
ice cream instead of milk

– Skip the test since you always need more ice cream.

Where R we going with Synchronization

• We are going to implement various higher-level
synchronization primitives using atomic operations
– Everything is pretty painful if only atomic primitives

are load and store
– Need to provide primitives useful at user-level

Load/Store Disable Ints Test&Set Comp&Swap

Locks Semaphores Monitors Send/Receive

Shared Programs

Hardware

Higher-
level

API

Programs

SUMMARY

We’re done for now, but
Todo’s for you after this
lecture…

If you have problems visit me in counseling hours. . . .

• Go through the slides and Book Sections: 5.1, 5.2

• Try to make an understanding about the non determinism
of concurrent multi threaded programs

• Try hand/mind execution of the sample programs
discussed in class

