
CMP325
Operating Systems

Lecture 29

File Permissions

Fall 2021
Arif Butt (PUCIT)Note:

Some slides and/or pictures are adapted from course text book and Lecture slides of
• Dr Syed Mansoor Sarwar
• Dr Kubiatowicz
• Dr P. Bhat
• Dr Hank Levy
• Dr Indranil Gupta

For practical implementation of operating system concepts discussed in these slides,
students are advised to watch and practice video lectures on the subject of OS with
Linux by Arif Butt available on the following link:
http://www.arifbutt.me/category/os-with-linux/ 1

http://www.arifbutt.me/category/os-with-linux/

Today’s Agenda
• Overview of Protection & Security
• Protection in Linux
• How Permissions are managed
• Default Permissions
• Changing Permissions

– Symbolic Way
– Octal Way

• Special Permissions
– SUID bit
– SGID bit
– Sticky bit

2

Overview of File Protection

PROTECTION AND SECURITY

• When information is kept in a computer system, we want to
keep it safe from physical damage (reliability) and
improper access (protection).

• File owner/creator should be able to control:
– What can be done to the file / directory
– By whom it can be done

• Different OS support different types of access to files
and directories:
– Read
– Write
– Execute
– Append
– Delete
– List

• The purpose of protection system is to prevent accidental
or intentional misuse of a system

PROTECTION AND SECURITY

Three aspects to a protection mechanism:
• Authentication (Who goes there?): Authentication

means who is allowed to access the system. Any one
(even a program) who wants to access a system needs
to login and for that he/she must have a proper user
account on it. For example in a Linux based machine
every user must have an entry in the local user data
base file /etc/passwd along with /etc/shadow,
/etc/gourp and /etc/gshadow

• Authorization (Are you allowed to do that?): means
the authority of a user to perform various operations

• Accountability: means after a user has been
successfully authenticated and is authorized as well to
perform a specific task, even after that the foot print
of the user are recorded for later forensic usage

PROTECTION IN LINUX

• Users - Every user of a system is assigned a unique UID.
User’s names and UIDs are stored in /etc/passwd file.
Users cannot read, write or execute each others files
without permissions

• Groups - Users are assigned to groups with unique GID.
GIDs are stored in /etc/group. Each user is given his own
private group by default. He / she can belong to other
groups to gain additional access. All users in a group can
share files that belong to that group.

• Three Classes of Users

• User / owner - The owner is the user who created the
file. Any file you create, you own

• Group - A user / owner of a file can grant access of a file
to the members of a designated group

• Others - A user / owner of a file can also open up access
of a file to all other users on the system

PROTECTION IN Linux

File Security

What can be done to a File?
(Permissions)

By whom it ca n be done?
(Users & Groups)

• Read(r)
• Write (w)
• Execute (x)

• User(u)
• Group (g)
• Others (o)

Read Write and Execute permissions have different meanings
for files and directories:

For files, the permissions have following meanings:

READ: Enables users to open files and read its contents
using; less, more, head, tail, cat, grep, sort, view

WRITE: Enables users to open a file and change its
contents using vi, vim, peco, nano

EXECUTE: Enables users to execute files as commands

For directories the permissions have following meanings:

READ: Users can list directory contents using ls command

WRITE: Users can create, delete files (that he owns) in
the directory using mkdir, touch, cp commands

EXECUTE: Users can search in the directory and change
to it using the cd command. Without execute permissions
on a directory, read/write permissions are meaningless

PROTECTION IN LINUX

• Every file / directory contains a set of permissions that
determine who can access them and how. Lets view the
permissions associated with the /etc/passwd file

#ls -l /etc/passwd

-rw-r--r-- 1 root root 695 Dec 7 12:48 passwd

• Type of file (-, d, l, p, c, b, s). Once created cannot be changed

• Permissions (rwx, rwx, rwx). Can be changed using umask(1)

• Link Count (Number of hard links to this file). Can be changed using ln(1)

• Owner. Can be changed using chown(1)

• Group. Can bbe changed using chgrp(1)

• Size. Can be changed by changing contents of file

• Date/Time (modification time, access time, status change time)

• Name

PROTECTION IN UNIX

• Whenever a user access a file / directory, the permissions
are applied in following fashion:
– If you are the user/owner, the user/owner permissions apply

– If you are in the group, the group permissions apply

– If you are neither the owner nor the group member, then others
permissions apply

• To maintain the file type and permissions, all UNIX based
systems use a 16 bit architecture as shown:

PROTECTION IN UNIX

DEFAULT PERMISSIONS

• The new permissions on a file are set by the creator
program like vim(1), mkdir(1)

open(“f1.txt”, O_CREAT| O_RDWR, 0666);
mkdir(“d1”, 0777);

• The final permissions on files are
mode & ~umask

• The final permissions on directories are
mode & ~umask & 0777

• To display the current umask value use the umask(1)
command, which can also be used to change the umask
value

$ umask
$ umask 077

• The access rights for any given file can be modified by
using the change mode (chmod) command. chmod takes two
lists as its arguments: permission changes and filenames.

chmod mode filename/dirname

• We can use two different modes

– Symbolic

– Octal

CHANGING PERMISSIONS ON FILES

SYMBOLIC METHOD OF CHANGING PERMISSIONS
• Symbols for Level

u - Owner of a file

g - Group to which the user belongs

o - All other users

a - All Can replace u, g, or o

• Symbols for Permissions

+ Add the following permissions (does’nt affect other pmns).

- Remove the following permissions (does’nt affect other pmns).

= Assigns entire set of permissions.

• Examples

• chmod u=rwx filename

• chmod g=rx filename

• chmod g+x filename

• chmod o-w filename

• chmod a+r filename

• chmod a+r-x filename

• chmod o+r-wx filename

• chmod g=rw,o-w filename

• With the chmod command, we can use a three digit octal number as mode. Using octal
numbers all permissions are completely reset. You can’t add/remove individual settings,
as we can do in symbolic method of changing permissions

• The three categories, each with three permissions, conform to an octal binary format.
Octal numbers have a base 8 structure. When translated into a binary number, each octal
digit becomes three binary digits. Three octal digits in a number translate into three
sets of three binary digits, which is nine altogether— and the exact number of
permissions for a file.

• The first octal digit applies to the owner category, the second to the group, and the
third to the others category. The following table explains it.

r w x Level Permissions

0 0 0 0 No permissions.

0 0 1 1 Execute only

0 1 0 2 Write only

0 1 1 3 Write & Execute

1 0 0 4 Read only

1 0 1 5 Read & Execute

1 1 0 6 Read & Write

1 1 1 7 Read, Write & Execute

OCTAL METHOD OF CHANGING PERMISSIONS

owner

group
others

chmod 761 file

SPECIAL PERMISSIONS

SUID bit: (Set-User-ID bit)
• SUID bit is normally set for executable programs
• If a program has this bit set, it executes with the

power of the owner of the program
• It is represented by an s in the execute portion of

owner permissions, or a capital S in case if the owner
execute permission is off

• The passwd program has its SUID bit set and that is
how using passwd program one can write the
/etc/shadow file owned by root

• To check the executable files in our system having
their SUID bit set, run the following command

find / -perm /4000
• To set the SUID bit of a program

chmod u+s myexe
• SUID bit has no meanings on a directory

SPECIAL PERMISSIONS
SGID bit: (Set-Group-ID bit)
• SGID bit is set for executable programs and directories
• If a program has this bit set, it executes with the power

of the group of the program
• It is represented by an s in the execute portion of group

permissions, or a capital S in case if the group execute
permission is off

• The chage program has its SGID bit set and that is how
using chage program one can write the /etc/shadow file

• To check the executable files in our system having their
SGID bit set, run the following command

find / -perm /2000
• To set the SGID bit of a program

chmod g+s myexe
• SGID bit on directories are used in a shared group environment. Ay

file created in a directory with SGID bit set will automatically inherit
the group membership of that directory

SPECIAL PERMISSIONS
Sticky bit: (On Directories)
• In a shared group environment, all the members should have read as

well as write permissions on directories to create files in that
shared directory

• But setting these permissions on a directory, let all the group
members delete each other files as well, which is not required.
Solution is sticky bit

• If a directory having rwx permissions to all has this bit set, no one
can delete each others file

• It is represented by an t in the execute portion of others
permissions, or a capital T in case if the others execute permission
is off

• The /tmp directory has its sticky bit set and that is how although
being shared among all users of the system, no one can delete each
others files

• To check the all the directories in our system having their sticky
bit set, run the following command

find / -perm /1000
• To set the SGID bit of a program

chmod o+t mydir

SPECIAL PERMISSIONS
Sticky bit: (On Files)
• On older UNIX implementations, sticky bit was provided as

a way of making commonly used programs run faster
• The underlying concept was “ Loading a program from disk

(where it may be fragmented) is slow as compared to
loading a program from swap space on disk (where it is not
fragmented)

• If the sticky bit of an executable is set then the first
time it is executed, a copy of the program text is saved inn
the swap area, thus it sticks on the swap space and loads
faster on subsequent execution

• But today, the current sophisticated memory management
schemes have rendered this use of stick bit obsolete

We’re done for now, but
Todo’s for you after this
lecture…

19

• Go through the related video lectures # 22 and 23.

• Practice, practice and practice…

