
Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Video Lecture # 37
Socket Programming - IV

Design of Concurrent Servers

Course: SYSTEM PROGRAMMING

Instructor: Arif Butt

Punjab University College of Information Technology (PUCIT)
University of the Punjab

Source Code files available at: https://bitbucket.org/arifpucit/spvl-repo/src
Lecture Slides available at: http://arifbutt.me

2Punjab University College Of Information Technology (PUCIT)

Today's Agenda
Instructor:Arif Butt

● Iterative vs Concurrent Servers
● Multiple clients accessing a Iterative echo Server
● Design and Code of Concurrent echo Server

● Using fork()
● Using pthread_create()
● Using select()

● Concurrent Clients
● Assignment: Extending the nc(1) command to follow

the concurrent model

Internetworking with Linux:
https://www.youtube.com/playlist?list=PL7B2bn3G_wfD6_mhy-eLdn_mFgQ_mOyLl

3Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

What happens when an iterative server
get requests from multiple clients?

4Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Socket()

bind()

listen()

accept()

read()

write()

close()

socket()

connect()

write()

read()

close()

Connection Established
using 3-way Hand Shake

Data (Request)

Data (Response)

EOF Notification

Block until a connection
request arrives

System Call Graph: TCP Sockets

socket()

SERVER

CLIENT

5Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Iterative TCP echo Server

tcpechoserver.c, tcpechoclient.c

6Punjab University College Of Information Technology (PUCIT)

Concurrent TCP Server
Instructor:Arif Butt

● Concurrent models mostly use Stream sockets and can be
implemented using following three techniques:

● Multi-process Model: Multiple single threaded processes (using
fork() system call to cater for every new client). This is done if
each slave can operate in isolation. To achieve maximal
concurrency in case of multiprocessors

● Multi-threaded Model: Multiple threads within a single process.
Use pthread_create() library call to cater for every new
client. This is done if each slave need to share data with the parent
or with each other

● Non-Blocking Multiplexed I/O: Single thread within a single
process using asynchronous I/O. Server create a non-blocking
socket and use select() system call to cater for reading and
writing on multiple clients using socket multiplexing

7

Instructor:Arif Butt

Socket()

bind()

listen()

accept()

fork()

socket()

connect()

write()

read()

close()

Connection Established
using 3-way Hand Shake

Data (Request)

Data (Response)

socket()

Concurrent Connection-oriented Model

read()

write()

close()

Master
Server

Slave
process

System Call Graph Parent

child childchild …...

8Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Multiprocess: using fork()
socket();
bind();
listen();
while(1){

accept();
 fork(); // create a child process
 if (child){
 Close master socket
 Communicate with data socket
 Close data socket
 exit();
 }

else
{

 Close data socket
 Move up to accept a new client connection

}
}

Pseudocode: Concurrent Connection Oriented Server

9Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Concurrent TCP echo Server
Using fork()

tcpechoserver_forked.c

10Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Pseudocode: Concurrent Connection Oriented Server

Multi-Threaded: using pthread_create()
socket();
bind();
listen();
while(1){

accept();
 pthreadcreate(); /*create a detached thread and pass

 data socket to it as argument
 Move up to accept a new client connection
}

void* threadfunction(void* arg){
 Communicate using data socket
 Close data socket
 pthread_exit();
 }

11Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Concurrent TCP echo Server
Using pthread_create()

tcpechoserver_threaded.c

12Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

I/O Multiplexing
using

select()

13Punjab University College Of Information Technology (PUCIT)

Introduction to select()
Instructor:Arif Butt

● A process sometimes, expects input from two different sources, but
it doesn't know which input will be available first. For example,
consider a process trying to read from source A, but input is only
available from source B, and the process blocks

● One solution of monitoring multiple file descriptors is to use a
separate process/thread for each descriptor

● The other method is perform I/O multiplexing, which can be done
using
● The select() system call (appeared in BSD UNIX)

● The poll() system call (appeared in System V UNIX)

● Now a days both are required by SUSv3

14Punjab University College Of Information Technology (PUCIT)

select() System call
Instructor:Arif Butt

● The select() call allows a program to monitor multiple file descriptors,
until one or more of the file descriptors become ready for some class of I/O
operation. A file descriptor is considered ready if it is possible to perform a
corresponding I/O operation w/o blocking

● The select() call takes three descriptor sets of type fd_set as arguments:
● rfds is the set of file descriptors to be tested to see if input is possible

● wfds is the set of file descriptors to be tested to see if output is possible

● efds is the set of file descriptors to be tested to see if exceptional condition has
occurred

● The first argument nfds must be at least one greater than the largest file
descriptor in all three descriptor sets (to achieve performance gains)

● The last argument timeout is a value that forces select() to return after a
certain time has elapsed, even if no descriptors are ready. A NULL over here
means block indefinitely

int select(int nfds, fd_set* rfds, fd_set* wfds,
fd_set* efds, struct timeval* timeout);

15Punjab University College Of Information Technology (PUCIT)

select() System call (cont...)
Instructor:Arif Butt

● The select() call returns one of the following:
● A -1 indicating that an error occurred
● A 0 indicating that the call timed out before any file descriptor became ready
● A value greater than zero, indicates the total number of ready file descriptors in all

three descriptor sets
● If a bit in a descriptor set is 0, it means that the corresponding descriptor is not

ready and a value of 1 means the corresponding descriptor is ready
● The fd_set data type is implemented as bit fields in arrays of integers and

can be manipulated via four macros:

int select(int nfds, fd_set* rfds, fd_set* wfds,
fd_set* efds, struct timeval* timeout);

FD_ZERO(&fds) Initialize descriptor set, fds, to all zeros

FD_SET(fd, &fds) Include the given descriptor fd in the descriptor set fds

FD_CLR(fd, &fds) Exclude the given descriptor fd from the descriptor set fds

FD_ISSET(fd, &fds) Test if descriptor fd in descriptor set fds has a value of 0 or 1. Returns
0 if fd is not in the set fds and nonzero otherwise

16Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Concurrent TCP echo Server
Using select()

tcpechoserver_select.c

17Punjab University College Of Information Technology (PUCIT)

Concept of Concurrent Clients
Instructor:Arif Butt

● We all know that concurrent servers are used to reduce the average
response time experienced by a client. However, the need of a
concurrent client is not so obvious

● Consider a TCP echo client, which expect input from two
descriptors, one from the user via keyboard and other from the
client-side socket that is connected to the server-side socket

● A user may type some text using the keyboard any time and the
server response for a previous client message may also arrive at the
client-side socket descriptor at any instant of time (depending on the
load on the server process and network traffic)

● Since the two descriptors become ready asynchronously, so you can
implement such concurrent clients by using the select() system
call

18Punjab University College Of Information Technology (PUCIT)

Instructor:Arif Butt

Assignment: Design and Code
Concurrent version of

nc(1)

19Punjab University College Of Information Technology (PUCIT)

Things To Do
Instructor:Arif Butt

I f y o u h a v e p r o b l e m s v i s i t m e i n c o u n s e l i n g h o u r s

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

