
Lecture # 23-24
Hack Assembly Programming

Digital Logic Design

#include<stdio.h>
#include<stdlib.h>
int main(){
printf("Learning is fun with Arif\n");
exit(0);

}

global main
SECTION .data

msg: db "Learning is fun with Arif", 0Ah, 0h
len_msg: equ $ - msg

SECTION .text
main:

mov rax,1
mov rdi,1
mov rsi,msg
mov rdx,len_msg
syscall
mov rax,60
mov rdi,0
syscall

0: b8 01 00 00 00
5: bf 01 00 00 00
a: 48 be 00 00 00 00 00
11: 00 00 00
14: ba 1b 00 00 00
19: 0f 05
1b: b8 3c 00 00 00
20: bf 00 00 00 00
25: 0f 05

Instructor: Muhammad Arif Butt, Ph.D.

Slides of first half of the course are adapted from:
https://www.nand2tetris.org
Download s/w tools required for first half of the course from the following link:
https://drive.google.com/file/d/0B9c0BdDJz6XpZUh3X2dPR1o0MUE/view

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	5 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	25

Solution: multiplex, using an instruction register

program

Memory

data

ALU

instruction	
register

data	
address

fetch /
execute
bit

mux

instruction

instruction	
address

Memory	
address	

input	

control	bus

address	bus

Memory	
output

address	bus (data	flows	not	shown,	to	minimize	clutter)

load	
on	
fetch

instruction

data

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	1 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	33

Interactive simulation (using Xor as an example)

Simulation process:
• Load the HDL file into the hardware simulator
• Enter values (0’s and 1’s) into the chip’s input pins (e.g. a and b)
• Evaluate the chip’s logic
• Inspect the resulting values of:

q Output pins (e.g. out)
q Internal pins (e.g. nota, notb, aAndNotb, notaAndb)

a

Not

Not

And

And

Or

b

out
nota

notb aAndNotb

notaAndb

Xor.hdl
CHIP Xor {

IN a, b;
OUT out;

PARTS:
Not (in=a, out=nota);
Not (in=b, out=notb);
And (a=a, b=notb, out=aAndNotb);
And (a=nota, b=b, out=notaAndb);
Or (a=aAndNotb, b=notaAndb, out=out);

}

CHIP Xor {
IN a, b;
OUT out;
PARTS:
Not(in=a, out=nota);
Not(in=b, out=notb);
And(a=nota, b=b, out=w1);
And(a=a, b=notb, out=w2);
Or(a=w1, b=w2, out=out);

}

@R1
D=M
@temp
M=D

0000000000000001

1111110000010000

0000000000010000

1110001100001000

https://www.nand2tetris.org/
https://drive.google.com/file/d/0B9c0BdDJz6XpZUh3X2dPR1o0MUE/view

• Hack Assembly Programs
• A Hello World
• CPU Emulator
• Demo
• Program Termination
• Symbols in Hack Assembly Language
– Built-in Symbols
– Label Symbols
– Variable Symbols

• Branching
• Iteration
• Pointers and Arrays

2

Today’s Agenda

Instructor: Muhammad Arif Butt, Ph.D.

3

Review of Hack Computer
Assembly Instructions

Instructor: Muhammad Arif Butt, Ph.D.

4

Hack Computer Architecture

Instructor: Muhammad Arif Butt, Ph.D.

instruction
memory

ALU data
memory

D register

A register

PC

data outinstruction

data inaddress of
next
instruction

Hack CPU

CU

RAMROM M Register
M Register

Programmer Visible Registers:
• D: Used to hold data value
• A: Used to hold data value / address of the memory
• M: Represents the currently selected memory register, i.e., M=RAM[A]
Data memory (RAM) & Instruction memory (ROM):
• Both are a sequence of 16-bit registers having 15 bit address, i.e., 32K 16 bit words

5

Recap: Registers and Memory

Instructor: Muhammad Arif Butt, Ph.D.

6

Recap: The Hack Assembly Instructions

Instructor: Muhammad Arif Butt, Ph.D.

dest= comp ;jumpSyntax:

0, 1, -1, D, A, M, !D, !A, !M, -D, -A, -M,

D+1, A+1, M+1, D-1, A-1, M-1,

D+A, D-A, A-D, D&A, D|A,

D+M, D-M, M-D, D&M, D|M

comp:

null, M, D, A, MD, AM, AD, AMDdest:

null, JGT, JEQ, JGE, JLT, JNE, JLE, JMPjump:

The A-instruction: The C-instruction:
@valueSyntax:

dest= comp

comp ;jump

// D=10
@10
D=A

// D++
D=D+1

// D=RAM[17]
@17
D=M

// RAM[17]=D
@17
M=D

// RAM[23]=65
@65
D=A
@23
M=D

// RAM[17]=10
@10
D=A
@17
M=D

// RAM[5] = RAM[3]
@3
D=M
@5
M=D

// goto instr at addr 72
@72
0; JMP

// if D+1 <= 0 then jump
to instr at addr 1024
@1024
D+1 ;JLE

Note: Hack Assembly is case sensitive

7

Hack Assembly
Programs

Instructor: Muhammad Arif Butt, Ph.D.

8

Example: addv0.asm

Instructor: Muhammad Arif Butt, Ph.D.

// Program: addv0.asm
// Computes: RAM[0] = 27 + 13

Hack assembly code

4 @0. // A = 0
5 M=D // RAM[0] = D

0 @27 // A = 27
1 D=A // D = 27

2 @13 // A = 13

3 D=D+A // D = 27 + 13

32767

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Load

@27
D=A
@13
D=D+A
@0
M=D

Symbolic
view

Memory (ROM)

9

Example: addv0.asm (cont…)

Instructor: Muhammad Arif Butt, Ph.D.

// Program: addv0.asm
// Computes: RAM[0] = 27 + 13

Hack assembly code

4 @0. // A = 0
5 M=D // RAM[0] = D

0 @27 // A = 27
1 D=A // D = 27

2 @13 // A = 13

3 D=D+A // D = 27 + 13

32767

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

translate
and load

0000000000011011
1110110000010000
0000000000001101
1110000010010000
0000000000000000
1110001100001000

Machine
Code

Memory (ROM)

10Instructor: Muhammad Arif Butt, Ph.D.

// Program: addv1.asm
// Computes: RAM[2] = RAM[0] + RAM[1]
// Usage: put values in RAM[0], RAM[1]

Hack assembly code

4 @2
5 M=D // RAM[2] = D

0 @0
1 D=M // D = RAM[0]

2 @1
3 D=D+M // D = D + RAM[1]

32767

Memory (ROM)
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

translate
and load

0000000000000000

1111110000010000

0000000000000001

1111000010010000
0000000000000010

1110001100001000

Binary
view

Example: addv1.asm

11

Executing a Hack Assembly Program

Instructor: Muhammad Arif Butt, Ph.D.

// Program: addv1.asm
// Computes: RAM[2] = RAM[0] + RAM[1]
// Usage: put values in RAM[0], RAM[1]

@0
D=M // D = RAM[0]

@1
D=D+M // D = D + RAM[1]

@2
M=D // RAM[2] = D

Translate Execute

• We will develop Hack Assembler later in the course
• Now, we can use the CPU emulator for the purpose

0000000000000000
1111110000010000
0000000000000001
1111000010010000
0000000000000010
1110001100001000

Hack
Assembler

Load in
Hack Computer

12

Emulator

Instructor: Muhammad Arif Butt, Ph.D.

• In contrast to a simulator, an emulator attempt to mimic the hardware
features of a production environment, as well as software features

• Emulation is the process of artificially executing code intended for a
“foreign” architecture by converting it to the assembly/machine language
of that CPU

• The CPU Emulator that we will be using is designed and developed by
students of Interdisciplinary Center Herzliya Efi Arazi School of Computer
Science, headed by Yaron Ukrainitz

• HACK CPU Emulator is a software tool build in Java. We can load Hack
assembly program into CPU emulator’s instruction memory, the CPU
emulator translate it into machine language and execute it

• Convenient for debugging and executing symbolic Hack programs in
simulation

13

How to Download the CPU Emulator?

Instructor: Muhammad Arif Butt, Ph.D.

• Type the following URL in your browser:
https://bitbucket.org/arifpucit/

• In the public repositories pane, click the coal-repo repository, containing all
the source codes as well as the software tools used in this course

• In the left pane, click Downloads to download the entire repository on your
system. Now on your system just check the contents of tools directory that you
have just downloaded

Arif-MacBook:arifpucit-coal-repo/tools$ ls

HardwareSimulator.sh HardwareSimulator.bat

CPUEmulator.sh CPUEmulator.bat

Assembler.sh Assembler.bat

VMEmulator.sh VMEmulator.bat

JackCompiler.sh JackCompiler.bat

TextComparer.sh TextComparer.bat

builtInChips builtInVMCode bin OS

https://bitbucket.org/arifpucit/

14

Starting the CPU Emulator

Instructor: Muhammad Arif Butt, Ph.D.

• Follow the following steps to start the CPU emulator on UNIX/Mac OS:
Ø Open the terminal
Ø Go to tools directory
Ø Set execute permissions of the file CPUEmulator.sh
Ø Execute it

15

Loading an Assembly Program in CPU Emulator

Instructor: Muhammad Arif Butt, Ph.D.

CPU Emulator
• A software tool build in Java
• We can load Hack assembly program into

CPU emulator’s instruction memory, the CPU
emulator translate it into machine language
and execute it

• Convenient for debugging and executing
symbolic Hack programs in simulation

load

(the
simulator
software
translates
from
symbolic to
binary as it
loads)

// Program: addv1.asm
// Computes: RAM[2] = RAM[0] + RAM[1]
// Usage: put values in RAM[0], RAM[1]

Hack assembly code

4 @2
5 M=D // RAM[2] = D

0 @0
1 D=M // D = RAM[0]

2 @1
3 D=D+M // D = D + RAM[1]

Load

16

GUI of Hack CPU Emulator

Instructor: Muhammad Arif Butt, Ph.D.

17

Hack CPU Emulator: Instruction Memory

Instructor: Muhammad Arif Butt, Ph.D.

18

Hack CPU Emulator: Data Memory

Instructor: Muhammad Arif Butt, Ph.D.

19

Hack CPU Emulator: Registers

Instructor: Muhammad Arif Butt, Ph.D.

20

Hack CPU Emulator: ALU

Instructor: Muhammad Arif Butt, Ph.D.

21

Hack CPU Emulator: Screen and Keyboard

Instructor: Muhammad Arif Butt, Ph.D.

22

Hack CPU Emulator: Loading a Program

Instructor: Muhammad Arif Butt, Ph.D.

23Instructor: Muhammad Arif Butt, Ph.D.

Hack CPU Emulator: Loading a Program

24

Hack CPU Emulator: Running a Program

Instructor: Muhammad Arif Butt, Ph.D.

25Instructor: Muhammad Arif Butt, Ph.D.

Demo
CPU Emulator

19/addv1.asm

Running an Assembly Program in CPU Emulator

26

Program Termination

Instructor: Muhammad Arif Butt, Ph.D.

27

Terminating a Program

Instructor: Muhammad Arif Butt, Ph.D.

// Program: addv1.asm
// Computes: RAM[2] = RAM[0] + RAM[1]
// Usage: put values in RAM[0], RAM[1]

Hack assembly code

4 @2
5 M=D // RAM[2] = D

0 @0
1 D=M // D = RAM[0]

2 @1
3 D=D+M // D = D + RAM[1]

Memory (ROM)
0
1
2
3
4
5
6
7
8
9

10

@0
D=M
@1
D=D+M
@2
M=D

If you load above program inside the CPU emulator and run it
using fast forward button. The computer continues to execute the
program from instruction at address 0-5 and then continues
executing onwards and does not halt

Resulting from some
attack on the computer

Malicious code
start here

NOP slide attack

28

Terminating a Program

Instructor: Muhammad Arif Butt, Ph.D.

// Program: addv2.asm
// Computes: RAM[2] = RAM[0] + RAM[1]
// Usage: put values in RAM[0], RAM[1]

Hack assembly code

4 @2
5 M=D // RAM[2] = D

0 @0
1 D=M // D = RAM[0]

2 @1
3 D=D+M // D = D + RAM[1]

Memory (ROM)
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

@0
D=M
@1
D=D+M
@2
M=D
@6
0;JMP

6 @6
7 0;JMP

• Jump to instruction number A
(which happens to be 6)

• 0: syntax convention for jmp instructionsBest practice:
Remember computers never stand still. They always need to do
some thing, i.e., execute some instruction.
To terminate a program safely, end it with an infinite loop.

29Instructor: Muhammad Arif Butt, Ph.D.

Demo
CPU Emulator

19/addv2.asm

Running an Assembly Program in CPU Emulator

30

Symbols in Hack
Assembly Language

Instructor: Muhammad Arif Butt, Ph.D.

31

Symbols in Hack Assembly Language

Instructor: Muhammad Arif Butt, Ph.D.

• Assembly Instructions can refer to memory locations (addresses)
using either constants or symbols. Symbols are introduced into Hack
assembly programs in the following three ways:

• Predefined/Built-in Symbols: These are a special subset of RAM
addresses that can be referred to by any assembly program using
virtual registers and I/O pointers

• Label Symbols: These are user defined symbols, which serve to label
destinations of goto commands inside ROM (Program memory)

• Variable Symbols: These are also user defined symbols which are
assigned unique memory addresses starting at RAM addresses 16
onwards

32

Pre-Defined / Built-in
Symbols

Instructor: Muhammad Arif Butt, Ph.D.

33

Built-in Symbols: Virtual Registers

Instructor: Muhammad Arif Butt, Ph.D.

To simplify assembly programming, the symbols R0 to R15 are predefined
to refer to RAM addresses 0 to 15 respectively

These symbols can be used to denote “virtual registers”
Example: Suppose a programmer wants to write a constant value 7 at RAM[5]

// let RAM[5] = 7
@7
D=A

@5
M=D

Implementation:

symbol value
R0 0
R1 1 Attention: Hack is case-sensitive!
R2

...
2 R5 and r5 are different symbols.

...
R15 15

// let RAM[5] = 7
@7
D=A

@R5
M=D

Better Style:

34Instructor: Muhammad Arif Butt, Ph.D.

symbol value
SCREEN 16384

KBD 24576

Built-in Symbols: I/O Pointers
• The following two symbols SCREEN and KBD are predefined to

refer to RAM addresses 16384 (0x4000) and 24576 (0x6000)
respectively

• These are the base addresses of the screen and keyboard memory
maps (discussed in detail in Lecture # 18)

• These symbols will come into play, when we will write assembly
programs that deals with the screen and keyboard in the next lecture

35

Branching

Instructor: Muhammad Arif Butt, Ph.D.

36

Branching

Instructor: Muhammad Arif Butt, Ph.D.

• Branching is the fundamental ability to tell the computer to evaluate
certain Boolean expression and based on the result, decide whether
or not the flow of execution should continue the next instruction in
sequence or jump to some other location in the code

• All programming languages support various branching mechanisms
like if…else, while…, for…, and so on

• In machine language we have only one branching mechanism called
goto

37

Unconditional Branching

Instructor: Muhammad Arif Butt, Ph.D.

38

Conditional Branching

Instructor: Muhammad Arif Butt, Ph.D.

39

Branching Example

Instructor: Muhammad Arif Butt, Ph.D.

// Program: ifelsev1.asm
// Computes: if R0 > 0

R1 = 1
else

R1 = 0
// Usage: put a value in RAM[0], run and inspect RAM[1]

0 @R0 //Use of Built-in symbols

1 D=M //D = RAM[0]

2 @8
3 D;JGT // If R0>0 goto 8

4 @R1 //Use of Built-in symbols
5 M=0
6 @10
7 0;JMP

8 @R1 //Use of Built-in symbols
9 M=1

10 @10
11 0;JMP

40

Branching Example (cont…)

Instructor: Muhammad Arif Butt, Ph.D.

@R0

D=M
@8
D;JGT
@R1
M=0
@10
0;JMP
@R1
M=1
@10
0;JMP

cryptic code

• If we remove all the
comments as well as the line
numbers, the code become
quite unreadable or cryptic

• It is of course really difficult
to understand what this code
actually do

• Yet the code will work
perfectly fine as expected by
the programmer

41

Branching Example (cont…)

Instructor: Muhammad Arif Butt, Ph.D.

@R0

D=M
@8
D;JGT
@R1
M=0
@10
0;JMP
@R1
M=1
@10
0;JMP

cryptic code

“Instead of imagining that our
main task as programmers is to
instruct a computer what to do,
let us concentrate rather on
explaining to human beings
(fellow programmers) what we
intend a computer to do.”
– Donald Knuth

Important
If our programs are not self documented, we will not be able to fix and extend them

The Art of Computer Programming - Volume 1 (Fundamental Algorithms)
The Art of Computer Programming - Volume 2 (Semi-numerical Algorithms)
The Art of Computer Programming - Volume 3 (Sorting and Searching)
The Art of Computer Programming - Volume 4 (Combinatorial Algorithms)

42

Use of Predefined Symbols

Instructor: Muhammad Arif Butt, Ph.D.

0 @0

1 D=M

2 @8
3 D;JGT

4 @1
5 M=0
6 @10
7 0;JMP

8 @1
9 M=1

10 @10
11 0;JMP

0 @R0

1 D=M

2 @8
3 D;JGT

4 @R1
5 M=0
6 @10
7 0;JMP

8 @R1
9 M=1

10 @10
11 0;JMP

Use of Pre-defined symbols:
(R0, R1)

ifelsev0.asm ifelsev1.asm

43Instructor: Muhammad Arif Butt, Ph.D.

Demo
CPU Emulator

20/ifelsev1.asm

Running an Assembly Program in CPU Emulator

44

User Defined Symbols in Assembly Language

Instructor: Muhammad Arif Butt, Ph.D.

Assembly Instructions can refer to memory locations (addresses) using either constants or
symbols. Other than the predefined/build-in symbols, an assembly programmer can use user-
defined symbols:
• Label Symbols are addresses inside ROM and are used as destinations of JMP instructions
• Variable Symbols are addresses inside RAM and starts from addresses 16 onwards in Hack

LOAD R1, weightJMP loop

16

0

Data Memory

loop: 127

1

0

Instruction Memory

LOAD R1, M[16]JMP M[127]

94

1

Variable Symbols:Label Symbols:

45

Use of Labels

Instructor: Muhammad Arif Butt, Ph.D.

46Instructor: Muhammad Arif Butt, Ph.D.

// Program: ifelsev1.asm
// Computes: if R0 > 0

R1 = 1
else

R1 = 0
// Usage: put a value in RAM[0], run and inspect RAM[1]

0 @R0 //Use of Built-in symbols

1 D=M //D = RAM[0]

2 @8
3 D;JGT // If R0>0 goto 8

4 @R1 //Use of Built-in symbols
5 M=0
6 @10
7 0;JMP

8 @R1 //Use of Built-in symbols
9 M=1

10 @10
11 0;JMP

Branching Example: Understanding Labels

47

Branching Example: Understanding Labels

Instructor: Muhammad Arif Butt, Ph.D.

// Program: ifelsev2.asm
// Computes: if R0 > 0

R1 = 1
else

R1 = 0
// Usage: put a value in RAM[0], run and inspect RAM[1]

0 @R0

1 D=M //D = RAM[0]

2 @POSITIVE //@8
3 D;JGT // If R0>0 goto 8

4 @R1
5 M=0
6 @10
7 0;JMP

(POSITIVE)
8 @R1
9 M=1

10 @10
11 0;JMP

• These are user-defined symbols, which
serve to label destinations of goto
commands

• Declared by (xxx) directive

• So @xxx refer to the instruction number
following the declaration

• A label can be declared only once and can
be referred to any number of times and
any-where in the assembly program, even
before the line in which it is declared
using it in A-instruction

• The name of a user defined symbol can be
any sequence of alphabets, digits,
underscore, dot, dollar sign and a colon.
However, the name must not begin with a
digit

• The naming convention is to use
uppercase alphabets for labels and lower
case alphabets for variables

declaring
a label

Referring
to a label

48

Branching Example: Understanding Labels

Instructor: Muhammad Arif Butt, Ph.D.

// Program: ifelsev2.asm
// Computes: if R0 > 0

R1 = 1
else

R1 = 0
// Usage: put a value in RAM[0], run and inspect RAM[1]

0 @R0

1 D=M //D = RAM[0]

2 @POSITIVE //@8
3 D;JGT // If R0>0 goto 8

4 @R1
5 M=0
6 @END //@10
7 0;JMP

(POSITIVE)
8 @R1
9 M=1

(END)
10 @END //@10
11 0;JMP

declaring
a label

Referring
to a label

Referring
to a label

• These are user-defined symbols, which
serve to label destinations of goto
commands

• Declared by (xxx) directive

• So @xxx refer to the instruction number
following the declaration

• A label can be declared only once and can
be referred to any number of times and
any-where in the assembly program, even
before the line in which it is declared

• The name of a user defined symbol can be
any sequence of alphabets, digits,
underscore, dot, dollar sign and a colon.
However, the name must not begin with a
digit

• The naming convention is to use
uppercase alphabets for labels and lower
case alphabets for variables

49

Branching Example : Resolving Labels

Instructor: Muhammad Arif Butt, Ph.D.

// Program: ifelsev2.asm
// Computes: if R0 > 0

R1 = 1
else

R1 = 0
// Usage: put a value in RAM[0], run and inspect RAM[1]

0 @R0

1 D=M //D = RAM[0]

2 @POSITIVE //@8
3 D;JGT // If R0>0 goto 8

4 @R1
5 M=0
6 @END //@10
7 0;JMP

(POSITIVE)
8 @R1
9 M=1

(END)
10 @END //@10
11 0;JMP

Label resolution rules:

• Label declarations
are not translated, are
ignored, so generate
no code and are
called pseudo-
commands

• Each reference to a
label is translated, i.e.,
replaced with a
reference to the
instruction number
following that label’s
declaration

32767

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

@0
D=M
@8 // @POSITIVE

D;JGT
@1
M=0
@10 // @END

0;JMP
@1
M=1
@10 // @END

0;JMP

resolving
labels

ROM

50

Use of Predefined Symbols and Labels

Instructor: Muhammad Arif Butt, Ph.D.

0 @0

1 D=M

2 @8
3 D;JGT

4 @1
5 M=0
6 @10
7 0;JMP

8 @1
9 M=1

10 @10
11 0;JMP

0 @R0

1 D=M

2 @8
3 D;JGT

4 @R1
5 M=0
6 @10
7 0;JMP

8 @R1
9 M=1

10 @10
11 0;JMP

0 @R0

1 D=M

2 @POSITIVE
3 D;JGT

4 @R1
5 M=0
6 @END
7 0;JMP
(POSITIVE)
8 @R1
9 M=1
(END)
10 @END
11 0;JMP

Use of Pre-defined symbols:
(R0, R1)

Use of Label symbols:
(POSITIVE, END)

ifelsev0.asm ifelsev1.asm ifelsev2.asm

51Instructor: Muhammad Arif Butt, Ph.D.

Demo
CPU Emulator

20/ifelsev2.asm

Running an Assembly Program in CPU Emulator

52

Use of Variables

Instructor: Muhammad Arif Butt, Ph.D.

53

Variables

Instructor: Muhammad Arif Butt, Ph.D.

• Variable is an abstraction of a container, that has a name, a value
and an associated address inside RAM

• You can say that it is a named memory location
• In high level languages we also have a type associated with a
variable, but in Hack machine/assembly language, we have only 16
bit values of a variable

• So in Hack assembly language, a variable is user-defined symbol
xxx appearing in the program that is not predefined and is not
defined elsewhere using the (xxx) directive.

• All variables are assigned unique memory addresses by the
Hack Assembler, starting at RAM address 16 (0x0010)

54

Example: Using Variables

Instructor: Muhammad Arif Butt, Ph.D.

//Program: swap.asm
//flips the values of RAM[0] and RAM[1]
//temp = R1
// R1 = R0
//R0 = temp
// temp = R1
@R1
D=M
@temp
M=D
// R1 = R0
@R0

D=M
@R1
M=D
// R0 = temp

@temp

D=M
@R0
M=D
(END)
@END
0;JMP

symbol used for
the first time
(variable created)

symbol used again

@temp:
• Any symbol xxx appearing in the Hack

assembly program that is not predefined
and is not defined elsewhere using the
(xxx) directive is treated as a variable.
Each variable is assigned a unique
memory address starting at RAM address
16 (0x0010)

• Since @temp is the first occurrence of
the symbol temp, not declared as a label
elsewhere using (temp), so this
qualifies it to be a variable

• So each occurrence of this variable temp
in the program inside an A-instruction
will be translated into @16

• So you first declare/creates a variable
using an A-instruction @temp and then
assign it a value using C-instruction M=D

55

Example: Resolving Variables

Instructor: Muhammad Arif Butt, Ph.D.

//Program: swap.asm
//flips the values of RAM[0] and RAM[1]
//temp = R1
// R1 = R0
//R0 = temp
@R1
D=M
@temp
M=D // temp = R1

@R0

D=M
@R1
M=D // R1 = R0

@temp

D=M
@R0
M=D // R0 = temp

(END)
@END
0;JMP

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

@1
D=M
@16 // @temp
M=D
@0
D=M
@1
M=D
@16 // @temp
D=M
@0
M=D
@12
0;JMP

ROMresolving
symbols

Symbol resolution rules:
• A reference to a symbol

that has no corresponding
label declaration is treated
as a reference to a variable

• Variables are allocated to
the RAM from address
16 onward (say n), and
the generated code is
@n

• Here we have only one
variable, so that is
allocated RAM address 16.
If there are more they will
be allocated address 17,
18, and so on

In other words: variables are
allocated to RAM[16] onward.

32767

Symbolic
variable

Symbolic
label

56Instructor: Muhammad Arif Butt, Ph.D.

//Program: swap.asm
//flips the values of RAM[0] and RAM[1]
//temp = R1
// R1 = R0
//R0 = temp
@R1
D=M
@temp
M=D // temp = R1

@R0

D=M
@R1
M=D // R1 = R0

@temp

D=M
@R0
M=D // R0 = temp

(END)
@END
0;JMP

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

@1
D=M
@16 // @temp
M=D
@0
D=M
@1
M=D
@16 // @temp
D=M
@0
M=D
@12
0;JMP

ROMresolving
symbols

32767

Symbolic code is easy
to read and debug

Implications:

Symbolic
variable

Symbolic
label

The program has become Relocatable Code:
• You can take this program and load it into memory, not

necessarily to address zero, as long as you remember the
base address of memory where this program is loaded

• This is very important when several such programs are
loaded and running inside the memory

Implications of Using Symbols

57Instructor: Muhammad Arif Butt, Ph.D.

Demo
CPU Emulator

20/swap.asm

Running an Assembly Program in CPU Emulator

58

Example : maxv1.asm

Instructor: Muhammad Arif Butt, Ph.D.

0 @0
1 D=M //D = First no
2 @1
3 D=D-M //D = First no – Second no
4 @10
5 D;JGT // if D>0 (first is greater) goto address 10
6 @1
7 D=M // D = second number (which is max)
8 @12
9 0;JMP // if D<0 (second is greater) goto address 12
10 @0
11 D=M // D = first number (which is max)
12 @2
13 M=D // M[2] = D (max number)
14 @14
15 0;JMP

0
1
2

RAM
5
3
5

59Instructor: Muhammad Arif Butt, Ph.D.

Demo
CPU Emulator

20/maxv1.asm

Running an Assembly Program in CPU Emulator

60

Iteration

Instructor: Muhammad Arif Butt, Ph.D.

61

Iteration Example

Instructor: Muhammad Arif Butt, Ph.D.

Pseudo
Code:

// Computes RAM[1] = 1 + 2 + 3 … + n
n = R0
i = 1
sum = 0

LOOP:
if i > n goto STOP
sum = sum + i
i = i + 1
goto LOOP

STOP:
R1 = sum

// Computes RAM[1] = 1 + 2 + 3 … + n
// Usage: put a number (n) in RAM[0]
@R0
D=M
@n // First variable at RAM addr 16

M=D // n = R0
@i // second variable at RAM addr 17
M=1 // i = 1
@sum // third variable at RAM addr 18
M=0 // sum = 0

. . . .
32767

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

@0
D=M
@16 // @n
M=D
@17 // @i
M=1
@18 // @sum
M=0
...

Assembly
Code:

Variables are allocated to consecutive RAM locations from address 16 onwards

ROM

62

Iteration Example

Instructor: Muhammad Arif Butt, Ph.D.

// Computes RAM[1] = 1 + 2 + 3 … + n
n = R0
i = 1
sum = 0

LOOP:
if i > n goto STOP
sum = sum + i
i = i + 1
goto LOOP

STOP:
R1 = sum

// Computes RAM[1] = 1 + 2 + ... + n
// Usage: put a number (n) in RAM[0]
@R0
D=M
@n
M=D // n = R0
@i
M=1 //i = 1
@sum
M=0 //sum = 0

(LOOP)
@i
D=M
@n
D=D-M
@STOP
D;JGT //if i > n goto STOP
@sum
D=M
@i
D=D+M
@sum
M=D // sum = sum + i
@i
M=M+1 // i = i + 1
@LOOP
0;JMP

(STOP)
@sum
D=M
@R1
M=D // RAM[1] = sum

(END)
@END
0;JMP

Pre-defined symbols:
(R0, R1)

Label symbols:
(LOOP, STOP, END)

Variable symbols:
(n, i, sum)

63Instructor: Muhammad Arif Butt, Ph.D.

Demo
CPU Emulator

Interactive Testing
20/loops.asm

Iteration

64

Pointers and Arrays

Instructor: Muhammad Arif Butt, Ph.D.

65

Pointers and Arrays: Example

Instructor: Muhammad Arif Butt, Ph.D.

// for (i=0; i<n; i++)
// arr[i] = -1; Observations:

• Variables that store memory addresses like
arr in this example are called pointers
• Abstraction of arrays exist only in high

level languages. In machine language
there is no abstraction of arrays. Rather
array is a segment of memory of which we
know the base address of this segment and
the length of the array that programmer
has declared
• Arrays are implemented as a block of

memory registers and in order to access
these memory registers one after the other,
we need a variable that holds the current
address
• There is nothing special about pointer

variables, except that their values are
interpreted as addresses

66

Pointers and Arrays: Example

Instructor: Muhammad Arif Butt, Ph.D.

...

...

0
RAM

16
17
18

20
21
22
23
. . .

// for (i=0; i<n; i++)
// arr[i] = -1;
// Let us initialize arr=20, n=5, i=0

// arr = 20 A pointer var pointing to RAM[20]

@20
D=A
@arr

M=D

// n = 5 A data var containing value 5

@5
D=A
@n

M=D

// i = 0 A data var containing value 0
@i
M=0

// Loop code continues on next slide...
(LOOP)

20arr:
n:
i:

5
0

67

Pointers and Arrays: Example

Instructor: Muhammad Arif Butt, Ph.D.

...
20
5
1

...
-1

0

16
17
18

20
21
22
23
. . .

after 1
iteration

RAM// Code continues from previous slide
(LOOP)
// if (i==n) goto END
@i
D=M
@n
D=D-M
@END
D;JEQ

// RAM[arr+i] = -1
@arr
D=M
@i
A=D+M
M=-1

// i++
@i
M=M+1
@LOOP
0;JMP

(END)
@END
0;JMP

• Pointers in Hack: Whenever we have to access
memory using a pointer, we need an instruction
like A=expression

• Typical Pointer Semantics: Set the address
register to the contents of some memory register

...

...

0
RAM

16
17
18

20
21
22
23
. . .

20arr:
n:
i:

5
0

arr = 20
n = 5
i = 0

68Instructor: Muhammad Arif Butt, Ph.D.

...
20
5
2

...
-1
-1

0

16
17
18

20
21
22
23
. . .

after 2
iterations

RAM// Code continues from previous slide
(LOOP)
// if (i==n) goto END
@i
D=M
@n
D=D-M
@END
D;JEQ

// RAM[arr+i] = -1
@arr
D=M
@i
A=D+M
M=-1

// i++
@i
M=M+1
@LOOP
0;JMP

(END)
@END
0;JMP

• Pointers in Hack: Whenever we have to access
memory using a pointer, we need an instruction
like A=expression

• Typical Pointer Semantics: Set the address
register to the contents of some memory register

...

...

0
RAM

16
17
18

20
21
22
23
. . .

20arr:
n:
i:

5
0

Pointers and Arrays: Example

69Instructor: Muhammad Arif Butt, Ph.D.

...
20
5
3

...
-1
-1
-1

0

16
17
18

20
21
22
23
. . .

after 3
iterations

RAM// Code continues from previous slide
(LOOP)
// if (i==n) goto END
@i
D=M
@n
D=D-M
@END
D;JEQ

// RAM[arr+i] = -1
@arr
D=M
@i
A=D+M
M=-1

// i++
@i
M=M+1
@LOOP
0;JMP

(END)
@END
0;JMP

• Pointers in Hack: Whenever we have to access
memory using a pointer, we need an instruction
like A=expression

• Typical Pointer Semantics: Set the address
register to the contents of some memory register

...

...

0
RAM

16
17
18

20
21
22
23
. . .

20arr:
n:
i:

5
0

Pointers and Arrays: Example

70Instructor: Muhammad Arif Butt, Ph.D.

...
20
5
4

...
-1
-1
-1
-1

0

16
17
18

20
21
22
23
. . .

after 4
iterations

RAM// Code continues from previous slide
(LOOP)
// if (i==n) goto END
@i
D=M
@n
D=D-M
@END
D;JEQ

// RAM[arr+i] = -1
@arr
D=M
@i
A=D+M
M=-1

// i++
@i
M=M+1
@LOOP
0;JMP

(END)
@END
0;JMP

• Pointers in Hack: Whenever we have to access
memory using a pointer, we need an instruction
like A=expression

• Typical Pointer Semantics: Set the address
register to the contents of some memory register

...

...

0
RAM

16
17
18

20
21
22
23
. . .

20arr:
n:
i:

5
0

Pointers and Arrays: Example

71Instructor: Muhammad Arif Butt, Ph.D.

...
20
5
5

...
-1
-1
-1
-1
-1

0

16
17
18

20
21
22
23
. . .

after 4
iterations

RAM// Code continues from previous slide
(LOOP)
// if (i==n) goto END
@i
D=M
@n
D=D-M
@END
D;JEQ

// RAM[arr+i] = -1
@arr
D=M
@i
A=D+M
M=-1

// i++
@i
M=M+1
@LOOP
0;JMP

(END)
@END
0;JMP

• Pointers in Hack: Whenever we have to access
memory using a pointer, we need an instruction
like A=expression

• Typical Pointer Semantics: Set the address
register to the contents of some memory register

...

...

0
RAM

16
17
18

20
21
22
23
. . .

20arr:
n:
i:

5
0

Pointers and Arrays: Example

72Instructor: Muhammad Arif Butt, Ph.D.

Demo
CPU Emulator

Interactive Testing
20/arrays.asm

Manipulating Arrays using Pointers

73

Things To Do

Instructor: Muhammad Arif Butt, Ph.D.

Coming to office hours does NOT mean you are academically weak!

