
Lecture # 25
Interfacing I/O Devices

Digital Logic Design

#include<stdio.h>
#include<stdlib.h>
int main(){
printf("Learning is fun with Arif\n");
exit(0);

}

global main
SECTION .data

msg: db "Learning is fun with Arif", 0Ah, 0h
len_msg: equ $ - msg

SECTION .text
main:

mov rax,1
mov rdi,1
mov rsi,msg
mov rdx,len_msg
syscall
mov rax,60
mov rdi,0
syscall

0: b8 01 00 00 00
5: bf 01 00 00 00
a: 48 be 00 00 00 00 00
11: 00 00 00
14: ba 1b 00 00 00
19: 0f 05
1b: b8 3c 00 00 00
20: bf 00 00 00 00
25: 0f 05

Instructor: Muhammad Arif Butt, Ph.D.

Slides of first half of the course are adapted from:
https://www.nand2tetris.org
Download s/w tools required for first half of the course from the following link:
https://drive.google.com/file/d/0B9c0BdDJz6XpZUh3X2dPR1o0MUE/view

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	5 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	25

Solution: multiplex, using an instruction register

program

Memory

data

ALU

instruction	
register

data	
address

fetch /
execute
bit

mux

instruction

instruction	
address

Memory	
address	

input	

control	bus

address	bus

Memory	
output

address	bus (data	flows	not	shown,	to	minimize	clutter)

load	
on	
fetch

instruction

data

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	1 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	33

Interactive simulation (using Xor as an example)

Simulation process:
• Load the HDL file into the hardware simulator
• Enter values (0’s and 1’s) into the chip’s input pins (e.g. a and b)
• Evaluate the chip’s logic
• Inspect the resulting values of:

q Output pins (e.g. out)
q Internal pins (e.g. nota, notb, aAndNotb, notaAndb)

a

Not

Not

And

And

Or

b

out
nota

notb aAndNotb

notaAndb

Xor.hdl
CHIP Xor {

IN a, b;
OUT out;

PARTS:
Not (in=a, out=nota);
Not (in=b, out=notb);
And (a=a, b=notb, out=aAndNotb);
And (a=nota, b=b, out=notaAndb);
Or (a=aAndNotb, b=notaAndb, out=out);

}

CHIP Xor {
IN a, b;
OUT out;
PARTS:
Not(in=a, out=nota);
Not(in=b, out=notb);
And(a=nota, b=b, out=w1);
And(a=a, b=notb, out=w2);
Or(a=w1, b=w2, out=out);

}

@R1
D=M
@temp
M=D

0000000000000001

1111110000010000

0000000000010000

1110001100001000

https://www.nand2tetris.org/
https://drive.google.com/file/d/0B9c0BdDJz6XpZUh3X2dPR1o0MUE/view

• How to interface I/O devices with computer
• Interfacing Screen with Hack computer
– Demo of built-in Screen chip on h/w Simulator

• Interfacing Keyboard with Hack computer
– Demo of built-in Keyboard chip on h/w Simulator

• Assembly Programming with Screen using CPU Emulator
• Assembly Programming with KBD using CPU Emulator

2

Today’s Agenda

Instructor: Muhammad Arif Butt, Ph.D.

3

Input / Output

Instructor: Muhammad Arif Butt, Ph.D.

data

RAMROM

instruc-
tions

CPU

Keyboard: used to
get data from user

Screen: used to
display outputs

I/O Handling
• High Level Approach: Sophisticated software library functions are

used to display text/graphics on the monitor, read the keyboard,
read voice notes from mic and play the audio on speakers etc

• Low Level: Bits Manipulation

4Instructor: Muhammad Arif Butt, Ph.D.

• The way a microprocessor need to read/write different memory locations,
similarly the microprocessor also need to read/write different I/O devices
like the keyboard, mouse, monitor, printer, etc. This linking is also be
called I/O Interfacing. An I/O interface acts as a communication channel
between the processor and the externally interfaced device. The interfacing
of the I/O devices can be done in two ways
• Memory Mapped I/O Interfacing: Both memory and I/O devices have
same address space. So addressing capability of memory become less
because some part is occupied by the I/O. In memory mapped I/O, there
are same read-write instructions for memory and I/O devices, so CPUs
are cheaper, faster and easier to build. Example is Hack CPU

• Isolated I/O Interfacing: The I/O devices are given a separate
addressing region (separate from the memory). These separate address
spaces are known as ‘Ports’. In isolated I/O, there are different read-
write instructions for memory and I/O devices. x86-64 use Isolated I/O

Note: Data can be transferred between CPU and I/O devices in three modes, namely Program
controlled I/O, Interrupt initiated I/O, and Direct Memory Access

Interfacing I/O Devices with a Computer

5

Interfacing Screen with
Hack Computer

Instructor: Muhammad Arif Butt, Ph.D.

6

Memory Mapped Output

Instructor: Muhammad Arif Butt, Ph.D.

data

RAM
instructions

ROM screen
memory

map

Screen Memory Map:
• Screen memory map is a designated memory area, dedicated to manage a display unit
• To write something on the display unit, write some bits in the designated memory area

(zero to make a pixel off/white and one to make a pixel on/black)
• The physical display is continuously refreshed from the contents of memory map,

many times per second
• Whatever, we write in the memory map makes the corresponding pixels of screen

black and white in the next refresh cycle
• This is how we can write “Hello World” message on the screen

CPU

RAM

7

Screen Memory Map

Instructor: Muhammad Arif Butt, Ph.D.

8Instructor: Muhammad Arif Butt, Ph.D.

To set pixel (row,col) on/off
word = Screen[32*row + col/16]

word = RAM[16384 + 32*row + col/16]

Set (col%16)th bit of word to 0 or 1

RAM[i] = word

0
1

255

�
�
�

0 1 2 3 4 5 6 7 � � � 511

� � �

� � �

� � �

Black & White Display Unit
• A matrix of 256 rows x 512 columns
• 131072 pixels

Screen Memory Map (1D MM to 2D Screen)

row 0

row 1

1111010100000000
0000000000000000

�
�
�

0011000000000001
0000101000000000
0000000000000000

�
�
�

0000000000000000

�
�
�

0000000000000000
1011010100000000

�
�
�

0000000100000000

63

8159
8160

31
32
33

8191
(8K)

Memory Map
Screen (chip)

0
1

row 255

A sequence of 8K x 16 bit words
8192 words
131072 bits

refresh

16 x 32 = 512

(16384)

(255,7)
• Value of row can range from 0 to 255
• Value of col can range from 0 to 511

(0,511)

9

Output

Instructor: Muhammad Arif Butt, Ph.D.

data
memory

(16K)

screen
memory map

8k

0

24,576

16,384

Hack RAM

base address of the
screen memory map

• The physical screen is of 256 rows and 512 columns which makes 256 x 512 = 131072 pixels
• To map each pixel of screen on a single bit, the Screen memory map must contain 8K, 16 bits

words, which makes 8192 x 16 = 131072 bits
• The built-in chip implementation has the side effect of continuously refreshing a visual 256 by

512 black-and-white screen, simulated by the simulator. Each row in the visual screen is
represented by 32 consecutive 16-bit words, starting at the top left corner of the visual screen.

24,575
Keyboard MM

10Instructor: Muhammad Arif Butt, Ph.D.

address

15

in

16

out

16

RAM
(16K)

Keyboard

16,383
16,384

24,575
24,576

Screen
(8K

memory
map)

Memory

0

Screen Built-in Chip

Screen
address

15

in

16 out

16

Load

35

Screen Built in Chip

Instructor: Muhammad Arif Butt, Ph.D.

CHIP Screen {
IN in[16], // what to write
load, // write-enable bit
address[13]; // where to read/write
OUT out[16]; // Screen value at the given address
BUILTIN Screen;
CLOCKED in, load;

}

Screen.hdl

The built-in chip
implementation has the side
effect of continuously
refreshing a visual 256 by
512 black-and-white screen,
simulated by the simulator

11Instructor: Muhammad Arif Butt, Ph.D.

Demo
Hardware Simulator

Screen Chip
builtinChips/Screen.hdl

Screen Output Demo

12

Interfacing Keyboard with
Hack Computer

Instructor: Muhammad Arif Butt, Ph.D.

13

Input

Instructor: Muhammad Arif Butt, Ph.D.

data
memory

(16K)

screen
memory map

8k

0

24,576

16,384

Hack RAM

base address of the
KBD memory map

• The physical keyboard requires just one word inside the Hack Memory, as it will contain the
ASCII code of the character pressed on keyboard.

• So the 16 bit word of Hack RAM at address 24576 is where the keyboard is mapped.

Keyboard MM

14

The Hacker Character Set

Instructor: Muhammad Arif Butt, Ph.D.

key code

(space) 32

! 33

“ 34

35

$ 36

% 37

& 38

‘ 39

(40

) 41

* 42

+ 43

, 44

- 45

. 46

/ 47

key code

0 48

1 49

… …

9 57

: 58

; 59

< 60

= 61

> 62

? 63

@ 64

key code

A 65

B 66

C …

… …

Z 90

[91

/ 92

] 93

^ 94

_ 95

` 96

key code

a 97

b 98

c 99

… …

z 122

key code

newline 128

backspace 129

left arrow 130

up arrow 131

right arrow 132

down arrow 133

home 134

end 135

Page up 136

Page down 137

insert 138

delete 139

esc 140

f1 141

… …

f12 152

{ 123

| 124

} 125

~ 126

15

Memory Mapped Input

Instructor: Muhammad Arif Butt, Ph.D.

0000000000000000

Keyboard

When a key is pressed on the keyboard, the key’s scan code appears in the keyboard
memory map. Since no key is being pressed on the keyboard in this figure, so the
keyboard memory map contains all zeros

To check which key is currently pressed:

• Probe the contents of the Keyboardchip

• In the Hack computer: probe the contents of RAM[24576]

16

Memory Mapped Input

Instructor: Muhammad Arif Butt, Ph.D.

Keyboard
k

Scan-code of ‘ k ’ = 75

00000000000000000000000001001011000000000011010000000000001000000000000010000011

When a key is pressed on the keyboard, the key’s scan code appears in the keyboard
memory map

To check which key is currently pressed:

• Probe the contents of the Keyboardchip

• In the Hack computer: probe the contents of RAM[24576]

17

Memory Mapped Input

Instructor: Muhammad Arif Butt, Ph.D.

0000000000110100

Keyboard

Scan-code of ‘ 4 ’ = 52

4

When a key is pressed on the keyboard, the key’s scan code appears in the keyboard
memory map

To check which key is currently pressed:

• Probe the contents of the Keyboardchip

• In the Hack computer: probe the contents of RAM[24576]

18

Keyboard Built-in Chip

Instructor: Muhammad Arif Butt, Ph.D.

address

15

in

16

out

16

RAM
(16K)

Keyboard

Memory

0

Screen
(8K

memory
map)

Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	5 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	64

Memory

Keyboard

Keyboard24,576

Screen
(8K	memory	

map)
24,575

16,384

RAM
(16K)

16,383

0

address

15

in

16
out

16

• Realized by a built-in chip named Keyboard

• Keyboard: A read-only 16-bit register + a keyboard input side-effect.

built-in
chip

37

Key Board Built in Chip

Instructor: Muhammad Arif Butt, Ph.D.

CHIP Keyboard {

OUT out[16]; // The ASCII code of the pressed key,
// or 0 if no key is currently pressed,
// or one the special codes

BUILTIN Keyboard;
}

KeyBoard.hdl

16,383
16,384

24,575
24,576

19Instructor: Muhammad Arif Butt, Ph.D.

Demo
Hardware Simulator

Keyboard Chip
builtinChips/Keyboard.hdl

Keyboard Input Demo

20

Hack Assembly
Programming involving I/O

on
Hack CPU Emulator

Instructor: Muhammad Arif Butt, Ph.D.

21

I/O Devices: Screen And Keyboard

Instructor: Muhammad Arif Butt, Ph.D.

Simulated screen: 256 columns by 512
rows, black & white memory-mapped
device. The pixels are continuously
refreshed from respective bits in an 8K
memory-map, located at RAM[16384] -
RAM[24575].

Simulated keyboard:
One click on this button causes the
CPU emulator to intercept all the keys
subsequently pressed on the real
computer’s keyboard; another click
disengages the real keyboard from the
emulator.

22

I/O Devices: Keyboard in Action

Instructor: Muhammad Arif Butt, Ph.D.

23

I/O Devices: Keyboard in Action

Instructor: Muhammad Arif Butt, Ph.D.

24

I/O Devices: Screen in Action

Instructor: Muhammad Arif Butt, Ph.D.

25

Hack Assembly for
Input & Output

Instructor: Muhammad Arif Butt, Ph.D.

26

Drawing a Rectangle on The Screen

Instructor: Muhammad Arif Butt, Ph.D.
Nand	to	Tetris	/	www.nand2tetris.org	/	Chapter	4 /	Copyright	©	Noam	Nisan	and	Shimon	Schocken																																																															Slide	97

Handling the screen (example)

16 pixels wide

50 pixels long

Code
RAM

Screen

Task: draw a filled rectangle
at the upper left corner of
the screen, 16 pixels wide
and RAM[0] pixels long

27Instructor: Muhammad Arif Butt, Ph.D.

16 black pixels,
corresponding to
the first row of
the rectangle

screen
memory
map

physical
screen

for (i=0; i<50; i++)

draw 16 black pixels at the beginning of row i

addr = 16384

n = RAM[0]
i = 0

LOOP:
if i > n goto END
RAM[addr] = -1 //1111111111111111

// advances to the next row
addr = addr + 32
i = i + 1
goto LOOP

END:

goto END

Pseudo code
Drawing a Rectangle on The Screen

28Instructor: Muhammad Arif Butt, Ph.D.

Drawing a Rectangle on The Screen
/* Program: Rectangle.asm

Draws a filled rectangle at the screen's
top left corner, with width of 16 pixels
and height of RAM[0] pixels.

Usage: put a non-negative number

(rectangle's height) in RAM[0] */

@R0
D=M
@n
M=D // n = RAM[0]

@i

M=0 // i = 0

@SCREEN

D=A
@addr
M=D // addr = 16384 (screen’s base
address)

(LOOP)

// ...

//...
(LOOP)

@i
D=M
@n
D=D-M

@END
D;JGT // if i>n goto END
@addr
A=M
M=-1 //RAM[addr]=1111111111111111
@i

M=M+1 // i = i + 1
@32
D=A
@addr
M=D+M // addr = addr + 32
@LOOP
0;JMP // goto LOOP

(END)
@END // program’s end
0;JMP // infinite loop

29Instructor: Muhammad Arif Butt, Ph.D.

Demo
CPU Emulator

Interactive Testing
21/rectangle.asm

Drawing a Rectangle on The Screen

30

Example 2: fill.asm

Instructor: Muhammad Arif Butt, Ph.D.

Select No animation

Listen to the keyboard

No key is pressed so all
pixels of screen are white

31Instructor: Muhammad Arif Butt, Ph.D.

When any key is pressed all
pixels of screen becomes
black

Example 2: fill.asm

32Instructor: Muhammad Arif Butt, Ph.D.

Demo
CPU Emulator

Interactive Testing
21/fill.asm

Fill: A Simple Interactive Program

33

Things To Do

Instructor: Muhammad Arif Butt, Ph.D.

