
1

CMP325
Operating Systems

Lecture 19, 20

Contiguous Memory Allocation

Muhammad Arif Butt, PhD
Note:
Some slides and/or pictures are adapted from course text book and Lecture slides of
• Dr Syed Mansoor Sarwar
• Dr Kubiatowicz
• Dr P. Bhat
• Dr Hank Levy
• Dr Indranil Gupta

For practical implementation of operating system concepts discussed in these slides,
students are advised to watch and practice following video lectures:
OS with Linux:
https://www.youtube.com/playlist?list=PL7B2bn3G_wfBuJ_WtHADcXC44piWLRzr8
System Programming:
https://www.youtube.com/playlist?list=PL7B2bn3G_wfC-mRpG7cxJMnGWdPAQTViW

https://www.youtube.com/playlist?list=PL7B2bn3G_wfBuJ_WtHADcXC44piWLRzr8
https://www.youtube.com/playlist?list=PL7B2bn3G_wfC-mRpG7cxJMnGWdPAQTViW

Today’s Agenda
• Review of Previous Lecture

• Memory Hierarchy

• Purpose of Memory Management

• Address Translation

• Types of Address Bindings and Linking

• Overlaying

• Contiguous Memory Allocation Techniques

– MFT

– MVT

• Buddy Partitioning Scheme
2

MEMORY HIERARCHY

• Memory Hierarchy is to obtain the highest possible access

speed while minimizing the total cost of the memory system.

3

Internet Storage

Magnetic
tapes

Magnetic
disks

I/O
processor

CPU

Main
memory

Cache
memory

Auxiliary memory

Register

Cache

Main Memory

Secondary Storage

Internet Storage

4

To ensure fair, secure, orderly and efficient use of memory
• Fair means, fair distribution of memory among processes

• Secure means, once a process is brought in memory it should not

overwrite another process and must never cross its address space

• Orderly means, should follow some algorithm to allocate/de allocate

the memory to processes

• Efficient means, if a process needs 10KB, it should be given 10KB and

not 100KB

• Above tasks can be performed by doing following:
• Keeping track of used and free memory space

• When, where and how much memory to allocate and de-allocate

• Swapping processes in and out of main memory

• Von Neumann vs. Harvard Architecture

PURPOSE OF MEMORY MANAGEMENT

5

• Address Space

• All memory data

• i.e. program code, data, stack, heap,…

• Hardware Interface (Physical Reality)

• Computer has one small, shared memory

• Application Interface (Illusion)

• Each process wants large, private memory

ADDRESS SPACE ABSTRACTION

How can we
close this gap?

6

• Address Independence

• Same address space can be used in different address

spaces, yet remain logically distinct.

• Protection

• One address space cannot access data in another address

space

• Virtual Memory

• Address space can be larger than the amount of physical

memory on the machine

ADDRESS SPACE Illusions

7

ADDRESS SPACE Illusions

ILLUSION REALITY

• Giant address space

protected from others

(unless you want to share)

• More whenever you want it

• Many processes sharing

one address space

• Limited memory

LOGICAL & PHYSICAL ADDRESSES

• Logical Addresses/Virtual Addresses. An address generated by
the process / CPU; refers to an instruction or data within the address
space of the process. Process generate address within its own address
space. Set of all logical addresses generated by a process comprises its
logical address space.

• Physical Addresses. An address for a main memory location where
instruction or data resides is called the physical address. Set of all
physical addresses corresponding to the logical addresses comprises the
physical address space of that process.

• The run time mapping of logical to physical address is done by a piece of
the CPU h/w called the memory management unit (MMU).

• Note: Logical and physical addresses are the same in compile-time and load-time

address-binding schemes; logical (virtual) and physical addresses differ in execution-

time address-binding scheme

8

UNI & MULTI PROGRAMMING SYSTEMS
• Main memory is used to store data & programs for execution. Main memory is

considered as an array of bytes, every byte having a unique address.

• Uni-programming System.

– Main memory is divided into two parts. One for the OS and other for the
program currently being executed. Only one program can execute at a time.
Once it is over the next program is loaded. If a program is larger than the
user program area, the OS loads & executes it portion by portion(overlaying).

• Multiprogramming System.

– User program area is further sub divided to accommodate multiple
processes / programs. This task of sub division is carried out dynamically by
the OS and is known as Memory Management. Memory Manager is
responsible to keep track of which parts of memory are in use and which
parts are not in use to bring programs /parts of programs form auxiliary
memory to main memory & vice versa.

CPU Memory Manager Memory Hard Disk

Addr generated
by CPU is called
Logical Addr

Address seen by
memory unit is called

Physical / Absolute addr

Hard Disk Address is
called Virtual Address

9

10

ADDRESS TRANSLATION
using

Base and Limit Registers

MEMORY MANAGEMENT UNIT

11

• Hardware that translates a logical address to a physical
address

• Each memory reference is passed through the MMU
• Translate a logical address to a physical address
• There are lots of ways of doing it.

• Base and Limit Registers
• Segmentation
• Paging
• Paged Segmentation

MMU and TLB

Memory Management Unit (MMU)

Hardware that translates a virtual address to a physical

address

Each memory reference is passed through the MMU

Translate a virtual address to a physical address

Lots of ways of doing this!

Copyright ©: University of Illinois CS 241 Staff 5

CPU MMU
Virtual

address
Physical
address Memory

TLB

Cache of translations

Translation
mapping

BASE REGISTER

12

MMU

Base Register

Copyright ©: University of Illinois CS 241 Staff 38

Memory

Base Register

CPU

Instruction

Address

+

BA

MA MA+BA

Physical

Address
Logical

Address

Base Address

Base: s

t

ar t of th e pro cess’ s memory partition

BASE REGISTER

13

MMU

Base Register

Copyright ©: University of Illinois CS 241 Staff 39

Memory

Base Register

CPU

Instruction

Address

+

14000

346 14346

Physical

Address
Logical

Address

Base Address

Base: s

t

ar t of th e pro cess’ s memory partition

PROTECTION

14

Protection

Problem

How to prevent a malicious process from

writing or jumping into another user's or

OS partitions

Solution

Base bounds register

Copyright ©: University of Illinois CS 241 Staff 40

• Problem

• How to prevent a malicious process from writing or

jumping into another user’s or OS partition.

• Solution

• Bound/Limit Register

PROTECTION

15

Base and Bounds Registers

Copyright ©: University of Illinois CS 241 Staff 42

Memory

Bounds Register Base Register

CPU

Address
< +

Memory

Address

MA

Logical

Address LA

Physical

Address

PA

Fault

Base Address

Limit Address

MA+BA

Base

Address

BA

Base: start of the process’s memory partition
Limit: max address in the process’s memory partition

• Base: Start of the process’s memory partition

• Limit. Max address in the process’s memory partition

BASE AND LIMIT REGISTERS

16

• What must change during context switch:

• The base and bound registers

• Can a process change its own base and bound:

• No, only OS can change these registers

• The program can only do it indirectly (e.g., ask for more

memory in stack)

• Process may need more memory with time, how

does the kernel handle address space growing?

• You are the OS designer, design algorithm for allowing

processes to grow

LOGICAL & PHYSICAL ADDRESSES (cont…)
BASE OFFSET ADDRESSING
• Problem1

There is a Base / Relocation register, whose contents are added to
every address generated by a user process at the time it is sent to
memory. Draw its pictorial representation.

• Problem 2

In i8086, the logical address (16 bits) of the next instruction is
specified by the value of IP register. The physical address of the
instruction is computed by shifting the CS register (16 bits) left by
four bits and adding contents of IP to it, thus generating a physical
address of 20 bits. Draw its pictorial representation.

• Problem 3

In i8086, the contents of IP register is ox0B10 and contents of Code
Segment contains oxD000. Compute the Physical address and also give
the size of Logical and Physical address space.

17

18

ADDRESS BINDING

By Loader
By Linker

19

SOURCE CODE TO EXECUTION

Object code is in the form of

Machine instruction that the

underlying CPU can understand, but it

is not executable because of certain

references (e.g. reference to some

library calls) which are not part of it.

Linkage Editor links the function

calls that are not part of the

object code i.e. static linking.

COMPILE / ASSEMBLE

LINKAGE EDITOR

LOADER

SOURCE CODE

OBJECT MODULE

LOAD MODULE

BINARY IMAGE

Compile Time /
Absolute addresses

Load Time /
Re-locatable addresses

Execution / Run Time addresses
Implemented by dynamic linking

20

PCB

Program

Data

Heap

Stack

Object Code

Program

Data

Process image in main memory (Stored Program Concept)

LOADING FUNCTION

21

PCB

Program

Data

Heap

Stack

Instruction Execution Cycle

Address

I Op Code Addr

Operand

Result

Fetch Instruction

Decode Instruction

Fetch Operand

Execute Instruction

Store Result

CPU

PC

IR

DR

AC

22

ADDRESS BINDING - LOADER
Binding Time Function

Programming time All actual PA are directly specified by the

programmer in the program itself.

Compile or assembly time The program contains symbolic address

references, and these are converted to actual

physical addresses by the compiler or

assembler

Load time (Re-locatable Loading) The compiler or assembler produces relative

addressees, the loader translates these to

absolute addresses at the time of program

loading.

Run / Execution time (Dynamic Run Time

Loading)

The loaded program retains relative addresses.

The process can move from one memory

region to another during execution. These are

converted dynamically to absolute addresses

by processor hardware.

23

BINDING OF INSTRUCTIONS AND DATA TO ADDRESSES

PCB

-
JUMP 1424

-
-

LOAD 2224
-

-
-
-

data
-
-
-

Heap

Stack

P.A: 1024

1424

2224

Programming Time
• All actual physical addresses are directly

specified by the programmer in the program

itself

• Limitation:

• Very difficult for programmers to specify

address

• Used normally in uni-process programming

environment

24

BINDING OF INSTRUCTIONS AND DATA TO ADDRESSES

PCB

-
JUMP X

-
-

LOAD Y
-

-
-
-

data
-
-
-

Heap

Stack

P.A: 1024

X: 1424

Y: 2224

Compile Time
• The program contains symbolic address

references. These are converted to Physical

Addresses by the compiler/assembler

• If you know at compile time where the process

will reside in memory, the absolute code can be

generated by the compiler.

• Limitation:

• Process must reside in the same memory

region for it to execute correctly. If the

addresses are not free, we cannot load the

program for the execution, even if lot of

memory space is available

So in program time as well as in compile time address binding, we can load a process in
memory if and only if the absolute addresses for instructions and data are free inside
the memory

25

BINDING OF INSTRUCTIONS AND DATA TO ADDRESSES

PCB

-
JUMP 400

-
-

LOAD 1200
-

-
-
-

data
-
-
-

Heap

Stack

0

400

1200

Load Time (Re-locatable)
• Initially addresses within the process are relative

to start address. Final binding is delayed until

load time. Process can be loaded at any free slot

in memory. Data and instructions are assigned

addresses by loader at load time.

26

BINDING OF INSTRUCTIONS AND DATA TO ADDRESSES

PCB

-
JUMP 400

-
-

LOAD 1200
-

-
-
-

data
-
-
-

Heap

Stack

x

400 + x

1200 + x

Load Time (Re-locatable)
• Initially addresses within the process are relative

to start address. Final binding is delayed until

load time. Process can be loaded at any free slot

in memory. Data and instructions are assigned

addresses by loader at load time

• When this program is loaded into memory at

address x then:

27

BINDING OF INSTRUCTIONS AND DATA TO ADDRESSES

PCB

-
JUMP 400

-
-

LOAD 1200
-

-
-
-

data
-
-
-

Heap

Stack

0

400

1200

Dynamic/Run Time
• The loaded program retains relative addresses

• The relative addresses are converted dynamically

to absolute addresses by CPU hardware

• The process can move from one memory region to

another during execution

• Need hardware support for address maps (e.g.,

base and limit registers)

28

LINKING AND LOADING

Module A
-
-

JSR “L”
-
-

Return
Module B

-
-

JSR “L + M”
-
-

Return
Module C

-
-

Return

0

L-1

L + M -1

• The function of a linker is to take as input a collection of object

modules and produce a load module, consisting of an integrated set of

program and data modules to be passed to the loader

• Each intra module reference must be changed from a symbolic address

to a reference to a location within the over all load module

L

L + M

Module A
-
-

call B
-
-

Return

Module B
-
-

call C
-
-

Return

Module C
-
-
-

L

M

N

External
Reference to
module B

External
Reference to
module C

29

ADDRESS BINDING - LINKER
Binding Time Function

Programming time No external program or data references are allowed.
The programmer must place into the program the
source code for all subprograms that are referenced.

Compile time The assembler must fetch the source code of every
subroutine that is referenced and assemble them as a
unit.

Load module Creation (Static Linking) All object modules have been assembled using relative
addresses. These modules are linked together and all
references restarted relative to the origin of the final
load module.

Dynamic Linker defer the linkage of some external modules, i.e., the load module contains
unresolved references to other programs. These references can be resolved either at load time
or at run time

Load time dynamic linking External references are not resolved until the load
module is to be loaded into main memory. At that time,
referenced dynamic link modules are appended to the
load module, and the entire package is loaded into
main memory.

Run time dynamic linking External references are not resolved until the external
call is executed by the processor. At that time, the
process is interrupted, OS locates the module, loads it,
and links it to the calling module.

30

Mapping of a C Program into Process
Address Space

printf(“Bye Bye\n”);

31

5

Instructor:Arif Butt

Source code files (main.c, swap.c)

Preprocessed code files (main.i, swap.i)

Assembly code files (main.s, swap.s)

Object code files (main.o, swap.o)

Executable file (myexe)

Stored in secondary storage as an
executable image

Process Address
Space in main

memory

Preprocessing (cpp)

gcc main.o swap.o -o myexe

Compiling (cc)

Assembling (as)

Linking (ld)

Loader

Static
Library (.a)

Dynamic
Library (.so)

Load Time

Dynamic
Library (.so) Run Time

STATIC & DYNAMIC LINKING
• In static linking, system language libraries are linked at compile time.
• In dynamic linking the linking decision is postponed until run time
• A library call is replaced by a piece of code called stub, which is used to

locate memory resident library routine
• During execution of a process stub is replaced by the address of the

relevant library code and the code is executed
• If library code is not in memory it is loaded at this time of requirement
• Advantages of Dynamic Linking

– Less time needed to load a program
– Less memory space needed
– Less disk space needed to store binaries

• Disadvantages of Dynamic Linking
– Time consuming Run time activity resulting in slower program

execution. (i.e. getting some piece of code from disk and loading it in
memory)

– gcc compiler use dynamic linking by default, use –static option to
force static linking

32

33

OVERLAYING

OVERLAYING
• Overlays allow a process to be larger than the amount of memory allocated to it

• Keep in memory only those instructions and data that are needed at any given
time

• When other instruction and data are needed they are loaded into the space
occupied by previous instruction and data that are no longer needed

• Implemented by programmer

• Example. Lets take the example of a 2 pass assembler/compiler

– Pass 1 – 70 K (Parsing and syntax analysis)

– Pass 2 – 80 K (Generate object code)

– Symbol table –20 K (Contains language grammar & is constructed in Pass 1)

– Common Routines – 30K

• Over lay driver is a user defined program (nothing to do with OS) that decides
what to load first, when to unload and what to load next

• The pictorial diagram showing overlaying technique of above example is shown on
next slide

• Process size is 200 K, while memory allocated for the process is 150K. So we
need to do overlaying

34

OVERLAYING

35

SWAPPING

• A process can be swapped temporarily out of memory to a
backing store, and then brought back into memory for
continued execution

• Backing store – fast disk large enough to accommodate
copies of all memory images for all users; must provide
direct access to these memory images

• Roll out, roll in – swapping variant used for priority-based
scheduling algorithms; lower-priority process is swapped out
so higher-priority process can be loaded and executed

• Problem 4. Consider a process of size 1 MB. Disk to memory
transfer rate is 5 MB per second. Consider the average disk
latency to be 8 msec (assume no seek time). Calculate the
total cost of swapping

36

SCHEMATIC VIEW OF SWAPPING

37

38

CONTIGUOUS
SPACE ALLOCATION

CONTIGUOUS ALLOCATION
• Entire process will come in memory at a time and it will be loaded

at one place i.e. contiguous

• The memory is divided into two main parts:

– User Space; contain the user programs

– Kernel Space; contains the OS kernel

• A process is placed in a single contiguous area in memory

• Base (re-location) and limit registers are used to point to the
smallest memory address of a process and its size respectively

• Two techniques used for contiguous allocation are:

– Multiprogramming with Fixed Tasks (MFT). (Multiple fixed
size partitions)

– Multiprogramming with Variable Tasks (MVT). (Multiple
variable size partitions)

39

M F T

• Multi programming with Fixed Tasks; Fixed Partitioning

• Memory is divided into several fixed size partitions. Each partition may
be of same or different size. Each partition contain exactly one process
/ task

• For now, think of a program as having a contiguous logical address space
that starts at 0, and a contiguous physical address space that starts
somewhere else

• When a partition is free, a process is selected from the input queue and
is loaded in the free partition. When the process terminates, the
partition becomes available for another process

• Hard ware requirements are a
Base Register, which is loaded by the
OS when it switches to a process

• P.Address = L. Address + Base Register
• Used by IBM for system 360 OS/MFT

40

M F T (cont…)

41

• Equal size partitions (Fig (a))

• Any process whose size is less than or equal to
that partition size can be loaded into an available
partition

• The OS can swap a process out of a partition, if
none are in a ready or running state

• A program may not fit in a partition, in which
case the programmer must design the program
with overlays

• Main memory use is inefficient, because any
program, no matter how small, occupies an entire
partition; which results in internal fragmentation

Un-Equal size partitions (Fig (b))

• Lessens both above problems, however, doesn’t
solve completely

• Programs up to 16 M can be accommodated
without overlay

• Smaller programs can be placed in smaller
partitions, reducing internal fragmentation

M F T (cont…)
M F T with Multiple Input Queues
• Every partition will have a separate queue of processes
• One input Queue per partition
• Every process coming to the memory will be moved to a separate queue

depending on its size
• Pictorial diagram representing MFT with multiple i/p Queues is shown on next

slide
M F T with Single Input Queue
• Single input Queue for all the partitions
• Search the Queue for a process when a partition becomes empty
• Which process to be brought in depends on the algo applied
• Can be Best fit, First fit, Next fit or Worst fit
• Pictorial diagram representing MFT with single i/p Queue is also shown on next

slide
Limitations

– A process may be too big to fit into a partition, the programmer must design
the program with the use of over lays

– Load time address binding is necessary, even if the process is swapped out it
will be swapped in to the same partition. (limitation of multiple input queues
only)

– Internal Fragmentation. Memory space is wasted, if a process is smaller in
size than the partition, space not used by the process is lost. (this limitation
is lessened in single input queue)

– No sharing between processes
42

M F T (cont…)

Partition 4

Partition 3

Partition 2

Partition 1

OS

100 K

300 K

200 K

150 K

Input
Queues

Multiprogramming with Fixed Tasks with a queue per partition

43

M F T (cont…)

Partition 4

Partition 3

Partition 2

Partition 1

OS

100 K

300 K

200 K

150 K

Input Queue

Multiprogramming with Fixed Tasks with one input queue
44

M V T / Dynamic Partitioning
• Multi programming with Variable Tasks; or Dynamic Partitioning
• Partitions are created dynamically (run time), so that each process is

loaded into a partition of exactly the same size as that of the process.
• Both the number and size of partitions change with time
• Jobs can move form one partition to another. After swapping out the

process can be swapped in to some other partition
• No internal fragmentation (not exactly)

Limitation
– This technique starts well but eventually leads to a situation where a

lot of small holes are available in memory. As time goes on the
memory become more and more fragmented. All these holes make up
enough memory to bring in a process but these holes are not
contiguous

– External fragmentation refers to the state of memory space when
the total amount of unused space exists to satisfy a request but this
memory space is not contiguous

– Solution is Compaction. From time to time OS shifts all the
processes downwards, so that all the holes are converted into one
big hole. Time consuming and possible only if address binding is done
at run time. OR swap out one process to bring in another

45

• External Fragmentation

• Memory external to all processes is

fragmented

• Suppose now a process of size 10 MB comes,

it cannot be accommodated, we do have 16

MB free memory, but that is not contiguous

• Can resolve using compaction

– OS moves processes so that they are

contiguous

– Time consuming and wastes CPU time

OS (8M)

P1
(20M)

P2
(14M)

P3
(18M)

Empty
(56M)

Empty (4M)

P4(8M)

Empty (6M)

P2
(14M)

Empty (6M)

M V T / Dynamic Partitioning
64 MB

46

M V T (cont…)
Placement Algorithms. When it is time to load / swap a process into main memory

and if there is more than one free block of memory of sufficient size, then the OS must
decide which free block to allocate. It can use any of the following algorithms:

• Best Fit
– Scan all holes and chooses the one with a size closest to the requirement

– Worst performer overall

– Since smallest block is found for process, the smallest amount of fragmentation is
left

– Memory compaction must be done more often

• First Fit
– Scan from beginning and chooses the first available block that is large enough

– Fastest

– May have many process loaded in the front end of memory that must be searched over
when trying to find a free block

• Next Fit
– Scan memory from the location of last placement and chooses next available block

that is large enough

– More often allocated a block of memory at the end of memory where the largest block
is found

– The largest block of memory is broken up into smaller blocks

– Compaction is required to obtain a large block at the end of memory
47

SAMPLE PROBLEMS

• Problem 5

– Show how the available memory of 810 KB will accommodate following

job sequence with all the four placement algorithms.

– Job Sequence:

J1 (90K),J2 (45K), J3 (180K), J4 (90K), J5 (135K), J6 (180K), J3

terminates, J5 terminates, J7 (135K), J8 (180K), J7 AND J8

TERMINATE, J9(285K).

• Problem 6

– Show how the available memory of 2560 KB will accommodate following

job sequence with all the four placement algorithms. OS Kernel takes

400 KB.

– Job Sequence:

– P1 (600K), P2 (1000K), P3 (300K), P2 terminates, P4 (700K), P5 (500K).

– Draw the pictorial representation using MVT

48

BUDDY SYSTEM OF PARTITIONING

• We have seen that MFT suffers from internal fragmentation
while MVT suffers from external fragmentation

• The buddy system of partitioning relies on the fact that space
allocations can be conveniently handled in sizes of power of 2

• There are two ways in which the buddy system allocates space
– Suppose we have a free slot which is the closest power of

two. In that case, that free slot is used for allocation
– In case we do not have that situation then we look for the

next power of 2 free slot, split it in two equal halves and
allocate one of these

• Because we always split the free slots in two equal sizes, the
two are buddies. Hence the name buddy system

• At any time, the buddy system maintains a list of holes
(unallocated blocks) of each size 2i

• When ever a pair of buddies on the i list both become
unallocated, they are removed from the list and coalesced into
a single block on the i+1 list

49

EXAMPLE BUDDY SYSTEM OF PARTITIONING

50

TREE REPRESENTATIN OF BUDDY SYSTEM

51

BUDDY SYSTEM OF PARTITIONING

• With 1024 K or (1M) storage space we split it into buddies
of 512 K, splitting one of them to two 256 K buddies and so
on till we get the right size. Also, we assume scan of memory
from the beginning. We always use the first hole which
accommodates the process.

• Otherwise, we split the next sized hole into buddies. Note
that the buddy system begins search for a hole as if we had
a number of holes of variable sizes. In fact, it turns into a
dynamic partitioning scheme if we do not find the best-fit
hole initially.

• The buddy system has the advantage that it minimizes the
internal fragmentation. In practice, some Linux flavors use
it.

52

SAMPLE PROBLEMS

• Problem 8

– Show how the available memory of 1MB will be allocated using Buddy
Memory Allocation scheme.

– (P1:100K);(P2:240K);(P3:64 K); (P4:256 K). P2 terminates. P1
terminates. (P5:75K). P3 terminates. P4 terminates. P5 terminates.

• Problem 9

– Consider a swapping system in which memory consists of the
following hole sizes in memory order: 10, 4, 20, 18, 7, 9, 12 and 5 KBs

– Which hole is taken for successive segment requests of

a. 12 KB

b.10 KB

c.9 KB

– for First Fit?

– Repeat the question for Best Fit, Worst Fit and Next Fit.

53

54

SAMPLE PROBLEMS

Problem 10

A swapping system eliminates empty slots by compaction. Assuming a

random distribution of many empty slots and many data segments. Time to

read or write a 32 bit memory word of is 10 nsec. How long does it take to

compact 128 MB? For simplicity, assume that word 0 is part of an empty

slot and that the highest word in memory contains valid data.

Problem 11

Given five memory partitions of 100, 500, 200, 300 and 600 KB (in order).

How would each of the First Fit, Best Fit and Worst Fit algorithms place

processes of 212 Kb, 417 Kb, 112 KB, and 426 KB (in order)? Which

algorithm makes the most efficient use of memory?

We’re done for now, but
Todo’s for you after this
lecture…

55

• Go through the slides and Book Sections: 8.1, 8.2, 8.3

• Solve all the sample problems given in slides to
understand the concepts discussed in class

