
1

CMP325
Operating Systems

Lecture 21-23

Non-Contiguous Memory Allocation

Muhammad Arif Butt, PhD
Note:
Some slides and/or pictures are adapted from course text book and Lecture slides of
• Dr Syed Mansoor Sarwar
• Dr Kubiatowicz
• Dr P. Bhat
• Dr Hank Levy
• Dr Indranil Gupta

For practical implementation of operating system concepts discussed in these slides, 
students are advised to watch and practice following video lectures:
OS with Linux:
https://www.youtube.com/playlist?list=PL7B2bn3G_wfBuJ_WtHADcXC44piWLRzr8
System Programming:
https://www.youtube.com/playlist?list=PL7B2bn3G_wfC-mRpG7cxJMnGWdPAQTViW

https://www.youtube.com/playlist?list=PL7B2bn3G_wfBuJ_WtHADcXC44piWLRzr8
https://www.youtube.com/playlist?list=PL7B2bn3G_wfC-mRpG7cxJMnGWdPAQTViW


Today’s Agenda
• Review of Previous Lecture

• Introduction to Paging
– Address Translation in Paging

– Implementation of Page Table
• In CPU Registers

• In Associative Memory

• In main memory

– Structure of Page Table
• Hierarchical

• Inverted

• Hashed

• Introduction to Segmentation

• Introduction to Paged Segmentation

• Intel 80386 Address Translation
2



LOGICAL/VIRTUAL ADDRESS
• A Logical address is the address generated by the 

process/CPU OR is the address used by the process to 
access its own address space
– Logical Address         Actual Physical RAM Address

– When a process access a logical address, MMU hardware translates the 
Logical Address to Physical Address

– Operating System determines the mapping from Logical Address to Physical 
address

• Benefits

– Isolation

– Illusion of larger memory space

– Relocation (A program does not need to know which physical 
addresses it will use when it is run. Can even change physical location 
when it is running)

3



INTRODUCTION TO PAGING
• Paging is like reading a book. At any time we do not need all pages except ones 

we are reading. The analogy suggest that pages we are reading are in the main 
memory and the rest can be in the secondary memory

• Logical/Virtual address space is the set of addresses that programs use for 
load and store operations on disk. Logical address space is divided into pages

• Physical address space is the set of addresses used to reference locations in 
the main memory. Physical address space is divided into frames

• Pages and frames must be of same size

• Typical page sizes range from 1KB to 64 KB. (different for different 
architectures)

• Pages that have been loaded into the main memory form disk are said to have 
been mapped into the main memory

• A program / process is loaded by loading its pages into available not necessarily 
contiguous frames

• To run a program having n pages, find n free frames and load the pages into 
these frames. These frames need not to be contiguous. For example a program 
comprising of 10 pages need 10 free frames in main memory, which need not to 
be contiguous. For this to work, we need to store the mapping information of 
which page is loaded in which frame, in some data structure called “Page Table”

• No external fragmentation. Internal Fragmentation in paging is half a page per 
process

4



PAGE TABLES

• Page Tables are used to keep track of
how logical addresses map to physical
addresses. Page table entries generally
contain the frame number where the
particular page is loaded. In addition a
PTE may also contain a modify bit,
resident bit, valid bit and protection
bits

• Page table size depends on the
maximum number of pages of a process
that a CPU support. E.g. if a system
support a process of maximum 8 pages
then the page table will contain 8 rows
(length is debatable). So the address
of page table will consist of 3 bits

Frame No

5

000

111



USE OF PAGE TABLES

6

Page # of a process

Frame # of memory
where this  page is 
loaded.



LOGICAL & PHYSICAL ADDRESS FORMAT IN PAGING

Logical Address format (p, d)

• Address generated by CPU is divided into:
– Page number (p) – used as an index into a page table which contains 

base address of each page in physical memory.
– Page offset (d) – combined with base address of frame to define 

the physical memory address that is sent to the memory unit.

Physical Address format (f, d)

• Physical address translated from the L.A is divided into:
– Frame number (f) – kept in the page table against the page number.
– Frame offset (d) – is the same as the page offset

7



ADDRESS TRANSLATION ARCHITECTURE IN PAGING
• Address translation means conversion of logical address into the 

equivalent physical address.

8

Index to the page table
Displacement within
the page

PTBR +

Contains the base address
of Page Table



PAGING EXAMPLE

• Page size                      = 4 bytes

• Process address space = 4pages

• Physical address space = 8frames

• Logical address: (1,3)   = 0111

• Physical address: (6,3) = 11011

9

Page#
Frame#

0111

No of bits for page no = 2

No of bits for frame no = 3

11011

(p,d)

(f,d)



PAGE TABLE ENTRY
Typical PTE format (dependent on processor architecture)

• Various bits accessed by MMU on each page access:
– Modify/Dirty bit: Indicates whether a page is dirty or modified

– Resident bit: Indicates whether the page is resident in memory or 
not (may be on disk). Its not an error for a program to access a non-
resident page. A page fault occurs and the page is brought into 
memory from disk

– Valid bit: Page is legal for the program to access, e.g., is the page a 
process has requested is part of its address space. (Abort)

– Protection bits: Specify if a page is readable, writable or 
executable

10

Page Table Entry 

Typical PTE format (depends on CPU architecture!) 
 

 

 

 

Various bits accessed by MMU on each page access: 

Modify bit: Indicates  whether  a  page  is  “d i rty”  (modified) 

Reference bit: Indicates whether a page has been accessed 

(read or written) 

Valid bit: Whether the PTE represents a real memory mapping 

Protection bits: Specify if page is readable, writable, or 

executable 

Page frame number: Physical location of page in RAM 
Why is this 20 bits wide in the above example? 

 Copyright ©: University of Illinois CS 241 Staff 29 

page frame number prot V R M 

20 2 1 1 1 



SAMPLE PROBLEMS
Problem 12
• Consider a logical address space of 16 pages each of 1024 words (each word of 2 

Bytes) mapped into a physical memory of 32 frames
• Give the Logical and Physical address format
• Also give the total Logical and Physical address space
• Compute the required page table size for this situation

Problem 13
• A system has 48 bit L.A & a main memory of 64 GBs. Page size is 4096 bytes. 

Compute the number of pages and frames that exist in the system. Also give L.A & 
P.A format.

Problem 14
• Consider a system with 

– L.A = 32 bits ;   Page Size = 4 K ;   Main memory = 512 MB.
• Compute the total process address space and maximum number of pages in a process 

address space. Also give the logical and physical address format. Also give the page 
table size for this situation.

Problem 15
• Consider a LA space of 8 pages of 1024 words mapped into memory of 32 frames.

– How many bits are there in the LA?
– How many bits are there in PA?

11



SAMPLE PROBLEMS
Problem 16
• In a system with a logical address space of 64 pages, each of 512 bytes 

mapped into physical memory of 1024 frames. Compute lengths (in bits) 
of p, d, f, logical and physical address format.

Problem 17
• A system has 48 bit logical address, physical address space is 32 bits 

and page size is 4 KB. Determine the lengths of p, d, f, logical and 
physical address formats, maximum number of pages per process and 
maximum number of frames in the system, page table entry size (PTES) 
and the size of the page table.

Problem 18
• Consider a system that allows maximum 2 Mega pages per process with 2 

KB page size. Determine the length of the logical address only.

Problem 19
• Consider a system with 24 bits physical address space that supports a 

frame size of 512 Bytes. Calculate the page table entry size (PTES) and 
the length of physical address.

12



SAMPLE PROBLEMS
Problem 20

• For each of the following logical addresses (given in decimal), compute the 
page number and offset within the page; if the page size is 4 KB

– 20000

– 32768

– 60000

• Repeat for an 8 KB page
Problem 21

• A machine has a 32 bit address space and an 8 KB page. The page table is
entirely in hardware, with one 32 bit word per entry. When a process
starts, the page table is copied to the hardware from memory, at one
word every 100 nsec. If each process runs for 100 msec (including the
time to load the page table), what fraction of the CPU time is devoted to
loading the page tables?

Problem 22

• A machine has a 48 bit virtual addresses and 32 bit physical addresses. 
Page size is 8 KB. How many entries are needed for the page table?

13



SAMPLE PROBLEMS
Problem 23
• Let 14000 is a logical address, in which page does it exist if the page 

size is 1 KB?

Problem 24
• In a system with 34 bits logical address and 32 bits physical address 

and a 16 KB page size. How many entries will be there in the page table?

Problem 25
• Consider a virtual address 40808. Compute the virtual page number and 

offset for a 4 KB page

14



PAGED ARCHITECTURES
Paging Parameters in Intel P4

• 32 bit linear address.   (Intel used the term linear instead of logical)
• 4 K page size
• Maximum pages in a process address space = 232 / 212 = 1 M
• No of bits for d = 12
• No of bits for p = 32 – 12 = 20
• What about the physical address format? / What about no of bits 

for f?

Paging Parameters in PDP 11

• 16 bit Logical address.
• 8 K page size.
• Maximum pages in a process address space =  216 / 213 = 8
• No of bits for d = 13
• No of bits for p = 16 – 13 = 3
• What about the physical address format? / What about no of bits 

for f ?

15



IMPLEMENTATION OF 
PAGE TABLE

16



IMPLEMENTATION OF PAGE TABLES
IN CPU REGISTERS

• Design CPU in such a way that page table can be kept / maintained within the 
CPU, using its registers. (costly affair)

• Feasible for small process address space with less number of pages which may 
be of large size

• Effective Memory Access Time (time to convert L.A to P.A) is almost the same 
as the Physical memory access time

• Example is PDP-11, which has eight pages each of size 8 KB

IN MAIN MEMORY

• Page table is kept in main memory

• Page-table base register (PTBR) points to the starting address of page table

• Page-table length register (PRLR) indicates size of the page table

• In this scheme every data/instruction access requires two memory accesses. 
One for the page table (that resides inside the main memory)  and one for the 
data / instruction.

T
EFFECTIVE

=    2 T
MEM 

17



IMPLEMENTATION OF PAGE TABLES (cont…)

IN ASSOCIATIVE CACHE / TLB

• Use a Cache / Translation Look Aside Buffer (TLB)

• Place references of some of the recently used pages in TLB, i.e. a 

portion of page table resides in TLB and the rest in main memory

• On a context switch, the TLB is flushed and loaded with values for the 

scheduled processes. (Normally TLB contains the page numbers of the 

currently running process)

• If mapping is found page hit else page fault

18



ADDRESS TRANSLATION-PAGE HIT

19

1. CPU sends virtual address/logical address to MMU

2-3. MMU fetches PTE from page table in memory

4. MMU sends physical address to memory

5. Memory sends data word to CPU



ADDRESS TRANSLATION-PAGE FAULT

20

1. CPU sends virtual address/logical address to MMU

2-3. MMU fetches PTE from page table in memory

4. Valid bit is zero, so MMU triggers page fault exception

5. Handler identifies victim (and if dirty pages it out to disk)

6. Handler pages in new page and updates PTE in memory

7. Handler returns to original process, restarting fault instruciton



QUESTION 1: MEMORY ACCESSES

• Isn’t it slow to have to go to memory twice every time?

• Yes, it would be…, so real MMUs don’t

• Solution 1: PTEs are cached in L1 like any other memory 

word

– PTEs may be evicted by any other data references

– PTE hit still requires a small L1 delay

• Solution 2: TLB

– Small, dedicated, superfast hardware cache of PTEs in MMU

– Contains complete Page Table Entries for small number of pages

21



ADDRESS TRANSLATION-TLB HIT

22

A TLB hit eliminates a memory access



ADDRESS TRANSLATION-TLB MISS

23

A TLB miss incurs an additional memory access (the PTE). 

Fortunately, TLB misses are rare



IMPLEMENTATION OF TLB
• Caches employing associative mapping stores complete address as well as 

content of memory word in cache.
• So any location in cache (using associative mapping) can store any word from 

main memory.
• Example.

– Carry out associative mapping of main memory(32 X 8) and cache (8 words)
– Width of Cache = Address bits of memory + Data width

00010 29

11111 96

00000 54

A.R (5) K.R (5)

Main memory Addr
(5 bits)

Data (8bits)

54

90

29

25

91

-

-

-

96

00000

00001

00010

00011

00100

11111

Main memory
- CPU generates physical addr of 5 bits

- It is placed in A.R

- Associative memory is searched for the 

matching address

- If found the corresponding bit of the 

M.R is set & the corresponding data is 

sent to CPU

- If not found the memory is accessed & 

the addr-data pair is transferred to 

cache & to CPU

- If the cache is full an addr-data pair 

must be displaced to make room as per 

the predetermined replacement algo

24



IMPLEMENTATION OF PAGE TABLE (cont…)

PAGING HARDWARE

CPU P             d

f

TLB

f

TLB
Miss

TLB
Hit

f             d

Physical Memory

PA

LA

Page # Frame #

PTBR +

(Cache in MMU)Contains the base 
address of Page Table

PT (In main memory)
25



IMPLEMENTATION OF PAGE TABLE (cont…)

Performance In Paging

Effective Memory Access Time (Page hit)    = Time to access TLB + Time to access memory

Effective memory Access Time (Page Fault) = Time to access TLB + 2 x Time to access memory

• If HR is the hit ratio and MR is the miss ratio then

TEFFECTIVE      =      HR (TTLB  + TMEM ) +   MR ( TTLB  + 2 TMEM )

26



IMPLEMENTATION OF PAGE TABLE (cont…)
Problem 26

• Consider a system with memory access time of 100 nsec. Page table is 
implemented using associative memory. The TLB access time is 20 ns. 
Hit ratio is 80%. Calculate the Effective memory access time. Calculate 
the Effective memory access time if there is no TLB, i.e. the entire 
page table is kept in memory.

Problem 27

• Repeat above example with a hit ratio of 95% and compare
Problem 28

Consider a paging system with the page table stored in memory.

a. If a memory reference takes 200 nanoseconds, how long does a paged 
memory reference take?

b. If we add associative registers, and 75 percent of all page-table 
references are found in the associative registers, what is the effective 
memory reference time? (Assume that finding a page-table entry in the 
associative registers takes zero time, if the entry is there.)

27



IMPLEMENTATION OF PAGE TABLE (cont…)

Problem 29

• If the hit ratio to a TLB is 80%, and it takes 15 nanoseconds to search
the TLB and 150 nanoseconds to access the main memory, then what
must be the effective memory access time in nanoseconds?

Problem 30

• If the hit ratio to register is 30% and hit ratio to TLB is 50%, and it
takes 1 and 10 nanoseconds to search the register and the TLB
respectively and 150 nanoseconds to access the main memory, then what
must be the Effective Memory Access Time in nanoseconds?

Problem 31

• Consider a system with 80% hit ratio, 50 nsec time to search the 
associative registers, 750 nsec time to access main memory. Find the 
time to access a page:
a. When the page number is found in associative memory
b. When the page number is not found in associative memory
c. Find the effective memory access time

28



STRUCTURE OF 
PAGE TABLE

29



QUESTION 2: PAGE TABLE SIZE

• Isn’t the page table huge? How can it be stored in RAM?

• Yes, it would be…, so real real page tables aren’t simple 

arrays

• For example, consider a logical address space of 64 bits and 

page size of 4 KB. Also consider the 8 byte PTE. How big 

the page table need to be?

30



STRUCTURE OF PAGE TABLE

• L.A space increases day by day due to the large size of 

processes, thus increasing the size of the Page Table

• Thus there is a dire need to structure Page Table in a 

better way especially in situation where the Page Table 

becomes larger in size than a single page size, i.e. a page 

table cannot be contained by a single page

• We can use following techniques for the structure of our 

page tables:

a. Multi level / Hierarchical Page Table

b.Hashed Page Table

c. Inverted Page Table
31



Multi level / Hierarchical Page Tables
• Consider a system with a logical address of 32 bits, and page size of 4K 

and each page entry of 4 Bytes

• Maximum pages in a process address space = 1M

• Page Table size = 4 M  (because each entry in page table is of 4 Bytes). 
Since total no of pages are 220 i.e. 1MB, so there will be 220 rows/ 
tupples /entries, each tupple of 4 Bytes. So page table size will be 4MB

• Since the system has a page size of 4K, therefore, the page table of 4M 
can’t be accommodated in a single page of 4K. Thus we have to make 
pages of the page table

• We keep two page tables:

– Outer page table / page directory (which keep track of the pages 
of the inner page table)

– Inner Page Table which actually maps the frames

• No of pages in the outer page table =  4M / 4K   = 1K

• So size of outer page table = 1K entries of 4 bytes each = 4KB

• This outer page table will now fit in one page

32



Multi level / Hierarchical Page Tables (cont…)
• A logical address (on 32-bit machine with 4K page size) is divided into:

– a page number consisting of 20 bits.
– a page offset consisting of 12 bits.

• Since the page table is paged, the page number is further divided into:
– a 10-bit page number 
– a 10-bit page offset

• Thus, a logical address is as follows:

page number page offset

p1
p2 d

1010 12

where p1 is an index into the outer page 
table, and p2 is the displacement within 
the page of the outer page table.

33



Two-Level Page Table Scheme

Outer page table is used to get hold of various 
pages inside the inner page table. 

P1 is used to index the outer page table whose 
entry will give us the base address of one of the 
pages inside the inner page tables.

1 K pages each of size 4 KB

P2 is then used to index the particular inner page
table to get the Frame Number.

Note:
Only the outer most / top level page table is required
To be kept in memory at all times. Other pages of the 
inner page tables can be copied to and from the hard
disk as needed.

34



Two-Level Page Table Scheme (cont…)

Address-translation scheme for a two-level 32-bit paging architecture

Since address translation works from the outer page table inwards, this 
scheme is also known as forward mapped page table. Pentium II uses this 
architecture

35



Multi level / Hierarchical Page Tables (cont…)

• Some other examples are:

– 32 bit Sun SPARC support 3 Level Paging

– 32 bit Motorola 68030 support 4 Level Paging

– 64 bit Sun Ultra SPARC support 7 Level Paging

• Since each level is stored as a separate table in memory, 
converting a logical address to a physical one may take more 
than three memory accesses

• As the no of levels increases, too many memory references 
needed for address translation

• But at times this is required to support large process 
address space, so that larger processes can be executed in 
larger applications

36



Inverted Page Tables
• A Page Table has one entry for each Page in the Logical Address space of 

process

• An Inverted Page Table has one entry for each Frame in the Physical Address 

space (Physical Memory)

• Entries of a Page Table contains Frame numbers

• Entries of a Inverted Page Table contains Page numbers and pid (information 

about the process that owns that page)

• Page Table is indexed with page number, p

• Inverted Page Table is indexed with Frame number, f

• Inverted Page Tables are used to reduce the size of page table

• Only one page table is required in the system. (All processes will have / share a 

single Inverted Page Table)

• Page table size is limited by the number of frames (i.e. the physical / main 

memory) and not Process Address Space

• Each entry in the Page Table contains pid and p#. There is a possibility that 

there are two processes executing at a time and each process has a page no 3. 

So to avoid this confusion we have to keep pid as well

• 64 bit Ultra SPARC and IBM Power PC uses this technique

37



Inverted Page Tables (cont…)
This scheme decreases the amount of memory needed to store each page table 
but increases the time needed to search the table. It is because inverted page 
table is sorted by Physical address, but looks up occur on Virtual address. So 
the whole table might need to be searched for a match.

(pid,p) pair is searched in the 
Inverted Page Table. If a match 
is found say at entry i, then 
that is the Frame # where that 
page is loaded in main memory.

Inverted Page Table is indexed with Frame # i, 
and not with page # , hence is named as 
inverted page table

Inverted Page Table has entries equal to 
the number of frames in Main memory. Each 
entry contain the pid and its page number.

38

F# 0



Hashed Page Tables

• Another common approach to handle address spaces larger than 32 bits 

is Hashed Page Table

• Hashing. A key is given, you pass it through a function that returns an 

integer value known as hash value, which is used to index a table / array 

(hash value must be within that array) where the required record will be 

lying or may contain a pointer to the record (link list)

• Hash Function. A function used to manipulate the key of an element in a 

list to identify its location in the list

39



Hashed Page Tables (cont…)

• Hashing can be combined with Inverted Page Tables, to overcome its 
limitation of complex / time consuming search.

• For 64 bit address space Clustered Page Tables are used.

40

Contains one entry (Link List) for pages of one process. So here 
we don’t have to look for pid.

Search the L.L (page no and corresponding frame no) 
looking for  a node whose page no corresponds to the page no in the 
Logical Address.

Each entry in the L.L has three 
fields: page number, frame number 
for the page and pointer to the 
next node- (p, f, next)



SAMPLE PROBLEMS
Problem 32

• A computer with a 32 bit address uses a two level page table. Virtual 
addresses are split into a 9 bit top level page table field, an 11 bit 
second level page table field and an offset. How large are the pages and 
how many are there in the address space?

Problem 33 

• Suppose that a 32 bit virtual address is broken up into four fields: a, b, 
c and d. The first three are used for a three level page table system. 
The fourth field, d, is the offset. Does the number of pages depend on 
the sizes of all four fields? If not, which ones matter and which ones do 
not?

Problem 34 

• A computer has 32 bit logical addresses and 4 KB pages.  How many  
entries are needed in the page table if traditional (one level) paging is 
used?

• How many page table entries are needed for two level paging, with 10 
bits in each part?

41



SAMPLE PROBLEMS
Problem 35

• Consider a system with 20 bit logical address and a page size of8 KB and
a single level page table. Let the page table base register (PTBR)
contains 14000 and PTES is 4 bytes. What will be the starting address
of the last entry of the page table? Also determine the maximum
number of pages per process supported by the system. What will be the
format of the logical address? Can you calculate the number of frames
with the provided information?

Problem 36

• Repeat above problem if logical address is of 32 bit and a two level
page table is used.

Problem 37

• Consider a system with 36 bits logical address that supports 4 KB page
size. Available physical memory is 64 MB. Calculate p, d, f, PTES,
minimum number of levels of the page table per process, format of
logical and physical addresses.

42



SAMPLE PROBLEMS
Problem 38

• Consider a system with 36 bits logical address space that supports 4 KB page size.

Available physical memory is 64 GB. OS running on this system supports 32 bits

PIDs. Calculate p, d, f, PTES in an inverted page table, size of the inverted page

table, and the format of logical and physical addresses.

Problem 39

• In a system with 2048 MB RAM and a 4 KB page size, how many entries will be there 

in an inverted page table?

Problem 40

• In a 64 bit machine, with 256 MB RAM and a 4 KB page size, how many entries will 

there be in the page table if it is inverted?

Problem 41

• Consider a system that has a Process ID of 32 bits and uses inverted page table for

address translation. The 34 bits logical address is viewed as a 22 bits page identifier

(p) and 12 bits offset (d). Size of physical address is 32 bits. Compute page size,

PTES, number of pages, and size of inverted page table.

43



SHARED PAGES

Shared Code

– One copy of read-only (reentrant) code shared among processes e.g. 

text editors

– Shared code must appear in same location in the logical address 

space of all processes

– Multiple invocations of vi editor or gcc; when multiple users invoke 

vim the code part can be shared by multiple processes, while data 

can be private for each process

Private Code and Data 

– Each process keeps a separate copy of the code and data

– The pages for the private code and data can appear anywhere in the 

logical address space
44



Shared Pages Example

Consider three processes P1, P2, P3, each correspond to an editor, e.g. vim

Code of the editor is shared 
by all the three processes, 
loaded in frames 3, 4 and 6, 
which corresponds to page# 0, 
1, 2 respectively.

F #P #

0

1

2

3

F #P #
0

1

2

3

F #P #

0

1

2

3

Each process page table has four 
pages, three for the editor code 
and one for the buffer / data.

Thus all processes are accessing the same 
physical memory frames for the code of 
editor. This way we have avoided to load the 
code of the editor at three different 
locations.

45



INTRODUCTION TO 
SEGMENTATION

46



INTRODUCTION TO SEGMENTATION
• A segment is a set of logically related instructions or data elements associated 

with a given name

• A segment is a logical unit such as: Main program, procedure, function, local  &  
global variables, stack, symbol table, arrays

• A program is a collection of segments. Each program is divided into a number of 
segments which can be of different lengths, however, there is a maximum 
segment length

• A program is loaded by loading all of its segments into dynamic partitions that 
need not to be contiguous

• Memory-management scheme that supports programmer’s view of memory

• Private Code and Data 

– Each process keeps a separate copy of the code and data

– The pages for the private code and data can appear anywhere in the logical 
address space

Subroutine Stack

SQRT Main
Program

Symbol
Table

The user does not think of memory as a 
linear array of words. Rather the user
prefers to view memory as  a collection of 
variable sized segments, with no 
necessary ordering among segments.

User's view of a program
47



LOGICAL VIEW OF SEGMENTATION

1

3

2

4

1

4

2

3

User space 

Segment Table

• In paging we store the pages in frames and keep the mapping in page table
• In segmentation instead of pages we have segments that are kept in the 
frames and we keep the mapping in segmentation table

• Unlike pages segments can be of variable size
48

Physical memory space



SEGMENTATION ARCHITECTURE
• Logical address consists of a two tuple:

• <segment-number, offset>,

• Segment-table base register (STBR) points to the segment table’s location in 
memory

• Segment-table length register (STLR) indicates number of segments used by a 
program;

• segment number s is legal if s < STLR

<

Segment Table

limit base

(s,d)

s

Memory

+y

n

error

CPU
Each segment table entry 
has: 
- Base contains the starting 
physical address where the 
segment resides in memory.

- Limit specifies the length 
of the segment.

Ensure that s < STLR. If 
yes then adds STBR to it 
and then index the 
Segment table.

Limit field inside 
the Segment 
Table refers to 
the length of the 
segment inside the 
main memory.

PA

49

Base contains the 
base address of the 
segment where the 
segment resides in 
memory.



SEGMENTATION  EXAMPLE

Subroutine

Segment 0

Stack
Segment 3

SQRT

Segment 1 Main
Program

Segment 2

Symbol
Table

Segment 4

Segment 0

Segment 3

Segment 2

Segment 4

Segment 1

1400

2400

3200

4300

4700

5700

6300

6700

Segment Table

1000   1400
400  6300
400  4300

1100   3200
1000   4700

limit    base
0
1
2
3
4

Logical Address Space

50



Problem 42

Consider the given segment table, What are the Physical 
addresses for the following logical addresses:

• (2,399)

• (4,0)

• (4,1000)

• (3,1300)

• (6,297)

Problem 43

Consider the given segment table, What are the 
Physical addresses for the following logical 
addresses:

• 0,430

• 1,10

• 2,500

• 3,400

• 4,112

Seg Base Len

0 219 600
1 2300 14
2 90 100
3 1327 580
4 1952 96

51

Segment Table

1000   1400
400   6300
400   4300

1100   3200
1000   4700

limit    base
0
1
2
3
4

SAMPLE PROBLEMS



Problem 44

Consider the given segment table, What are the
Physical addresses for the following logical
addresses:

• (0, 0)

• (2, 120)

• (6, 10)

• (5, 3399)

• (4, 1200)

• (0, 99)

52

Segment # Length Base

0 100 1200
0

1 1200 1210
0

2 190 1330
0

3 444 1550
0

4 19308 1800
8

5 3400 5000

Problem 45

Consider the above segment table, if segment table base register (STBR)
contains 36500 and segment table entry size (STES) is 64 bits then what
will be size of segment table? Also compute the address of the last entry?

SAMPLE PROBLEMS



SAMPLE PROBLEMS
Problem 46

• Compare between Segmentation and Base/Bound Address Translation

Techniques
1. Segmentation supports generalized base and bound with support of multiple segments at once

2. Protection: Different segments can have different protections

3. Flexibility: Can separately grow both stack and heap. Enables sharing of code and other segments if

needed

Problem 47

• What is the main difference between paging of memory and

segmentation of memory? List two ways in which this difference affects

the address translation hardware required with each scheme.

53



EXTERNAL FRAGMENTATION IN SEGMENATION

• External fragmentation exist in segmentation

• Holes can be adjusted by compaction, i.e. shuffle segments 

to place free memory together in one block

• Compaction is possible only if relocation is dynamic and is 

done at execution time

• So in segmentation we need run time address binding, i.e. 

dynamically a segment of process can be shifted to another 

location within the process address space within the main 

memory

54



PROTECTION IN SEGMENATION

• With each entry in segment table we associate specific bits for 
protection like we do in page table, i.e. valid bit, read-write, read only 
and execute bits.

• Protection information can be included in the segment table or segment  
register of the memory management hardware.

• Format of a typical segment descriptor is

Full read and write privileges
Read only (write protection)
Execute only (program protection)
System only (O.S. Protection)

Base address       Length     Protection

The protection field in a segment descriptor specifies the Access 
Rights to the particular segment

- Access Rights:

55



SHARING OF SEGMENTS
• Sharing can be implemented at segment level

• Segment table of multiple processes point to the same 
segment

• Consider two processes P1 and P2 each correspond to an 
editor

• In the main memory both will load the editor code at a 
single location and will share its code

• P1 and P2 will both have their private data/buffers as shown 
on next slide

56



SHARING OF SEGMENTS

57



INTRODUCTION

TO

PAGED SEGMENTATION

58



PAGED SEGMENTATION
• When the segments size become too large the larger is the 

External Fragmentation

• To prevent it, we page the segments (like we paged the Page 

Table)

• In paging, against every process we had a Page Table which used 

to map the pages of that particular process with the frames in 

the Physical memory where those pages were loaded

• Here every segment will be further divided into pages and their 

mapping information is kept in the Page Table

• So every segment will have a Page Table. This way there will 

be no External fragmentation

59



PAGED SEGMENTATION  EXAMPLE

Subroutine

Segment 0

Stack
Segment 3

SQRT

Segment 1 Main
Program

Segment 2

Symbol
Table

Segment 4

Logical Address Space

3

1

126

10

0

1

2

3

Page Table

1

0

-

-

-

3

-

-

-

2

0

1

2

3

10

126

60

Here we have divided segment 4 into four pages and kept that information in page table.



PAGED SEGMENTATION  EXAMPLE
• Logical address is still <s,d>, with s used to index the segment table
• Each segment table entry consist of the tupple <seg-length, page-

table-base>
• The logical address is legal if d < seg-length.
• Segment offset, d, is partitioned into two parts: p and d’
• p is used to index the page table associated with segment s
• d’ is used as offset within a page.
• p indexes the page table to retrieve frame, f, and physical address (f,d’)

is formed.

s d

p d’

index segment 
table

index page table offset within the page p

61

Maximum possible number 
of segments within a 
process

Maximum possible 
number of pages 
within a segment

Size of a page

Max size of segment



TRANSLATION (LA - PA) IN PAGED SEGMENTATION

d < seg-len
Seg-len  >= d

d’ is the offset 
within the page

62



63

SAMPLE PROBLEM

Problem 48

Consider MULTICS on a GE 345 processor, with Logical

Address of 34 bits and page size of 1 KB. s is of 18 bits and 

d is of 16 bits.

– What is the largest segment size?

– What is the maximum number of segments per process?

– Give maximum number of pages per segment.

– Give the LA format including the no of bits for p and d’



64

SAMPLE PROBLEM
Problem 49

• Consider a process in MULTICS with its segment # 15 

having 5096 bytes. The page size is 1 KB. The process 

generates a Logical Address of (15, 3921).

– Is it a legal address? If yes why?

– How many pages does the segment have?

– What page does the logical address refer to, and what is 

its offset?

– What is the P.A if page#3 (i.e. fourth page) is in frame 

12?



Problem 50

Consider the given segment table. How many page
tables will be constructed for the process whose
segments are shown in the segment table?

Problem 51

Consider the given segment table. If the system
implements paged-segmentation with the page size
of 2 KB, then compute the page number and offset
for the logical address of (4, 12765). Also compute
the number of pages in segment 4 and the address
of the 3rd entry in the page table (Assume PTES is
4 Bytes)

65

Segment # Length Base

0 100 1200
0

1 1200 1210
0

2 190 1330
0

3 444 1550
0

4 19308 1800
8

5 3400 5000

Problem 52

Consider the above segment table, if segment table base register (STBR)
contains 36500 and segment table entry size (STES) is 64 bits then what
will be size of segment table? Also compute the address of the last entry?

SAMPLE PROBLEMS



66

Problem 53

Consider a logical address in paged segmentation (16, 7865), where 16 is
segment number and 7865 is offset. Suppose segment 16 has length of
15690 bytes. Page size is 1 KB. Calculate following:

• Number of pages in segment number 16

• In which page the above said offset will reside?

• How would you represent the above address in <s, p, d’> format?

• Let the page p is stored at frame 30, what would be the physical
address?

SAMPLE PROBLEM



REAL MODE AND PROTECTED MODE ADDRESSING
• Earlier PCs like i8086 having an address bus of 20 bits and support only 1 

MB of memory

• i80286 has an address bus of 24 bits and can support 16 MB of memory

• i80386 has an address bus of 32 bits and can support 4 GB of memory

• Higher PCs (PCs with address bus greater than 20 bits) can operate in 

two modes:

• Real Mode

• Only first 1 MB of RAM can be accessed in Real Mode

• The Real Mode Address is a 20 bit address, stored and represented 

in the form of segment:offset (as a 20 bit addr can’t be stored in 

memory). Give a 4 bit left shift to seg register and add offset in it to get 20 bits address

• Protected Mode

• In Protected Mode whole of the RAM is accessible that includes the 

Conventional RAM (640 KB), System RAM (384 KB) and Extended 

memory (Memory higher than 1 MB)

• PCs initially boots up in Real Mode. It may be shifted to protected 

mode during the booting process using drivers like HIMEM.SYS. 
67



PROTECTED MODE ADDRESSING IN WINDOWS

• Real Mode supports only contiguous allocation

• Protected mode support non-contiguous allocation

• i80286 and higher processors support non-contiguous allocation

• i80286 support segmentation in Protected Mode

• i80386 and higher processors also support paging

• We must give credit to Pentium designers, as they have designed 

it to support pure paging, pure segmentation and paged segments, 

while at the same time being compatible with the i80286

• The key to such non contiguous allocation systems is the 

Addressing Technique, that is supported only in Protected mode

68



LA TO PA TRANSLATION IN PROTECTED MODE
• The heart of Pentium Virtual Memory consists of two tables: the LDT 

(Local Descriptor Table) and the GDT (Global Descriptor Table). Each 
program has its own LDT, but there is a single GDT, shared by all the 
programs on the computer. The LDT describes segments local to each 
program, including its code, data, stack, where as the GDT describes 
system segments

• Selectors

– In protected mode the segment registers are used as selectors

– As the name suggest they are used to select descriptor entry from 
some descriptor table

– To access a segment, a Pentium program first loads a 16 bit selector 
for that segment into one of the machine’s six segment registers

– During execution, the CS register holds the selector for the code 
segment and the DS register holds the selector for the data 
segment

Segment # g p

13 1 2

i. 13 bits selector index selects a 
descriptor table entry out of  8K 
entries of LDT or GDT (each entry of 
8 bytes, so a total of 64 KB)

ii. g = 0 means GDT, g = 1 means LDT.
iii. p is 2bit privilege level with 00 as 

highest privilege
69



LA TO PA TRANSLATION IN PROTECTED MODE
Descriptor
• A descriptor describes a memory segment by storing 

attributes  related to a memory segment. For every segment 
there is a descriptor

• Significant attributes of a memory segment can be its base 
address, its length and its access rights

• For address of 80286 we need 24 bit, while for 80386 we 
need 32 bits. But in both cases the descriptor size is 8 
Bytes

Base 0 - 15 Limit 0 - 15

G D OBase 24 - 31 Limit 16 - 19 Base 16 - 23TypeSDPLP

70



Intel 80386 ADDRESS TRANSLATION
• IBM OS/2, MS Windows, Linux are the most famous operating systems that run 

on i386

• It uses paged segmentation with two level paging and a TLB with 32 entries.

• L.A = 48 bits

• Page size = 4K. (each page table entry is of 4 Bytes)

• Each entry of TLB can refer to a page. So 32 entries of TLB can address to a 
memory of 32 X 4K = 128 K (which is also known as TLB reach)

• A bigger picture of V.A / L.A in Intel 80386 is given below:

p1 p2 d

Segment # g p

13 1 2

121010

• 13 bits selector index selects a descriptor table 
entry out of  8192 entries of LDT or GDT

• g = 0 means GDT, g = 1 means LDT

• p is 2bit privilege level with 00 as highest 
privilege

16 bit selector 32 bit offset

71



Intel 80386 ADDRESS TRANSLATION (cont…)
• We have 48 bit Logical address, which in Intel literature is also called 

Virtual Address
• Linear Address Space = 232 Bytes (max size of a segment)
• Max Segment size = 4 GB
• Maximum number of segments per process = 16 K (13 bits selector and 

one bit for the selection of LDT or GDT)
• At any one time the Intel CPU can access six segments out of these 

because of six segment registers (CS, DS, SS, ES,      )
• Selector is used to index a segment descriptor table to obtain an 8 byte 

segment descriptor entry. Base address and offset are added to get a 
32 bit linear address, which is partitioned into p1, p2 and d for 
supporting two level paging.
– p1 is used to index the page directory / outer page table (having 1K 

entries), which gives us the appropriate page table base address
– p2 is used to index this selected inner page table (having 1K entries) 

from where we get the frame number of the page of the given L.A
– This frame number is appended with d part of the Linear Address to 

get the Physical address
72



Intel 80386 ADDRESS TRANSLATION (cont…)

• Supports both segmentation and segmentation with paging

• CPU generates 48 bits Logical Address

• Given to segmentation unit:

» Which produces 32 bits Linear Address

• Linear address given to two level paging unit:

» Which generates Physical Address

73



Intel 80386 ADDRESS TRANSLATION (cont…)

CPU
selector

g ps

48 bit LA

16 32

Off set

DTBR

PDBR

+

Descriptor Table

+

Directory Page Offset

10 10 12

Logical Address

Linear  Address

+ +

Page Directory Page Table

Frame # Offset
PA

Physical  Address

Inner page table contains the 
Frame # which is appended with 
offset to get the P.A

Page Directory Base 
Register contains the Base 
address of Page Directory

Contains Base Address 
of the specific Inner 
page table

Each entry of the Descriptor 
Table contains an 8 Byte entry 
containing information about 
the segment; one of which is 
Base Address of the particular 
segment.

Physical Memory

74



We’re done for now, but 
Todo’s for you after this 
lecture…

75

• Go through the slides and Book Sections: 8.4 - 8.8

• Solve all the sample problems given in slides to 
understand the concepts discussed in class


