
1

CMP325
Operating Systems

Lecture 29

File Permissions

Muhammad Arif Butt, PhD
Note:
Some slides and/or pictures are adapted from course text book and Lecture slides of
• Dr Syed Mansoor Sarwar
• Dr Kubiatowicz
• Dr P. Bhat
• Dr Hank Levy
• Dr Indranil Gupta

For practical implementation of operating system concepts discussed in these slides,
students are advised to watch and practice following video lectures:
OS with Linux:
https://www.youtube.com/playlist?list=PL7B2bn3G_wfBuJ_WtHADcXC44piWLRzr8
System Programming:
https://www.youtube.com/playlist?list=PL7B2bn3G_wfC-mRpG7cxJMnGWdPAQTViW

https://www.youtube.com/playlist?list=PL7B2bn3G_wfBuJ_WtHADcXC44piWLRzr8
https://www.youtube.com/playlist?list=PL7B2bn3G_wfC-mRpG7cxJMnGWdPAQTViW

Today’s Agenda
• Overview of Protection & Security
• Protection in Linux
• How Permissions are managed
• Default Permissions
• Changing Permissions

– Symbolic Way
– Octal Way

• Special Permissions
– SUID bit
– SGID bit
– Sticky bit

2

Overview of File Protection

PROTECTION AND SECURITY

• When information is kept in a computer system, we want to
keep it safe from physical damage (reliability) and
improper access (protection).

• File owner/creator should be able to control:
– What can be done to the file / directory
– By whom it can be done

• Different OS support different types of access to files
and directories:
– Read
– Write
– Execute
– Append
– Delete
– List

• The purpose of protection system is to prevent accidental
or intentional misuse of a system

PROTECTION AND SECURITY

Three aspects to a protection mechanism:
• Authentication (Who goes there?): Authentication

means who is allowed to access the system. Any one
(even a program) who wants to access a system needs
to login and for that he/she must have a proper user
account on it. For example in a Linux based machine
every user must have an entry in the local user data
base file /etc/passwd along with /etc/shadow,
/etc/gourp and /etc/gshadow

• Authorization (Are you allowed to do that?): means
the authority of a user to perform various operations

• Accountability: means after a user has been
successfully authenticated and is authorized as well to
perform a specific task, even after that the foot print
of the user are recorded for later forensic usage

PROTECTION IN LINUX

• Users - Every user of a system is assigned a unique UID.
User’s names and UIDs are stored in /etc/passwd file.
Users cannot read, write or execute each others files
without permissions

• Groups - Users are assigned to groups with unique GID.
GIDs are stored in /etc/group. Each user is given his own
private group by default. He / she can belong to other
groups to gain additional access. All users in a group can
share files that belong to that group.

• Three Classes of Users

• User / owner - The owner is the user who created the
file. Any file you create, you own

• Group - A user / owner of a file can grant access of a file
to the members of a designated group

• Others - A user / owner of a file can also open up access
of a file to all other users on the system

PROTECTION IN Linux

File Security

What can be done to a File?
(Permissions)

By whom it ca n be done?
(Users & Groups)

• Read(r)
• Write (w)
• Execute (x)

• User(u)
• Group (g)
• Others (o)

Read Write and Execute permissions have different meanings
for files and directories:

For files, the permissions have following meanings:

READ: Enables users to open files and read its contents
using; less, more, head, tail, cat, grep, sort, view

WRITE: Enables users to open a file and change its
contents using vi, vim, peco, nano

EXECUTE: Enables users to execute files as commands

For directories the permissions have following meanings:

READ: Users can list directory contents using ls command

WRITE: Users can create, delete files (that he owns) in
the directory using mkdir, touch, cp commands

EXECUTE: Users can search in the directory and change
to it using the cd command. Without execute permissions
on a directory, read/write permissions are meaningless

PROTECTION IN LINUX

• Every file / directory contains a set of permissions that
determine who can access them and how. Lets view the
permissions associated with the /etc/passwd file

#ls -l /etc/passwd

-rw-r--r-- 1 root root 695 Dec 7 12:48 passwd

• Type of file (-, d, l, p, c, b, s). Once created cannot be changed

• Permissions (rwx, rwx, rwx). Can be changed using umask(1)

• Link Count (Number of hard links to this file). Can be changed using ln(1)

• Owner. Can be changed using chown(1)

• Group. Can bbe changed using chgrp(1)

• Size. Can be changed by changing contents of file

• Date/Time (modification time, access time, status change time)

• Name

PROTECTION IN UNIX

• Whenever a user access a file / directory, the permissions
are applied in following fashion:
– If you are the user/owner, the user/owner permissions apply

– If you are in the group, the group permissions apply

– If you are neither the owner nor the group member, then others
permissions apply

• To maintain the file type and permissions, all UNIX based
systems use a 16 bit architecture as shown:

PROTECTION IN UNIX

DEFAULT PERMISSIONS

• The new permissions on a file are set by the creator
program like vim(1), mkdir(1)

open(“f1.txt”, O_CREAT| O_RDWR, 0666);
mkdir(“d1”, 0777);

• The final permissions on files are
mode & ~umask

• The final permissions on directories are
mode & ~umask & 0777

• To display the current umask value use the umask(1)
command, which can also be used to change the umask
value

$ umask
$ umask 077

• The access rights for any given file can be modified by
using the change mode (chmod) command. chmod takes two
lists as its arguments: permission changes and filenames.

chmod mode filename/dirname

• We can use two different modes

– Symbolic

– Octal

CHANGING PERMISSIONS ON FILES

SYMBOLIC METHOD OF CHANGING PERMISSIONS
• Symbols for Level

u - Owner of a file

g - Group to which the user belongs

o - All other users

a - All Can replace u, g, or o

• Symbols for Permissions

+ Add the following permissions (does’nt affect other pmns).

- Remove the following permissions (does’nt affect other pmns).

= Assigns entire set of permissions.

• Examples

• chmod u=rwx filename

• chmod g=rx filename

• chmod g+x filename

• chmod o-w filename

• chmod a+r filename

• chmod a+r-x filename

• chmod o+r-wx filename

• chmod g=rw,o-w filename

• With the chmod command, we can use a three digit octal number as mode. Using octal
numbers all permissions are completely reset. You can’t add/remove individual settings,
as we can do in symbolic method of changing permissions

• The three categories, each with three permissions, conform to an octal binary format.
Octal numbers have a base 8 structure. When translated into a binary number, each octal
digit becomes three binary digits. Three octal digits in a number translate into three
sets of three binary digits, which is nine altogether— and the exact number of
permissions for a file.

• The first octal digit applies to the owner category, the second to the group, and the
third to the others category. The following table explains it.

r w x Level Permissions

0 0 0 0 No permissions.

0 0 1 1 Execute only

0 1 0 2 Write only

0 1 1 3 Write & Execute

1 0 0 4 Read only

1 0 1 5 Read & Execute

1 1 0 6 Read & Write

1 1 1 7 Read, Write & Execute

OCTAL METHOD OF CHANGING PERMISSIONS

owner

group
others

chmod 761 file

SPECIAL PERMISSIONS

SUID bit: (Set-User-ID bit)
• SUID bit is normally set for executable programs
• If a program has this bit set, it executes with the

power of the owner of the program
• It is represented by an s in the execute portion of

owner permissions, or a capital S in case if the owner
execute permission is off

• The passwd program has its SUID bit set and that is
how using passwd program one can write the
/etc/shadow file owned by root

• To check the executable files in our system having
their SUID bit set, run the following command

find / -perm /4000
• To set the SUID bit of a program

chmod u+s myexe
• SUID bit has no meanings on a directory

SPECIAL PERMISSIONS
SGID bit: (Set-Group-ID bit)
• SGID bit is set for executable programs and directories
• If a program has this bit set, it executes with the power

of the group of the program
• It is represented by an s in the execute portion of group

permissions, or a capital S in case if the group execute
permission is off

• The chage program has its SGID bit set and that is how
using chage program one can write the /etc/shadow file

• To check the executable files in our system having their
SGID bit set, run the following command

find / -perm /2000
• To set the SGID bit of a program

chmod g+s myexe
• SGID bit on directories are used in a shared group environment. Ay

file created in a directory with SGID bit set will automatically inherit
the group membership of that directory

SPECIAL PERMISSIONS
Sticky bit: (On Directories)
• In a shared group environment, all the members should have read as

well as write permissions on directories to create files in that
shared directory

• But setting these permissions on a directory, let all the group
members delete each other files as well, which is not required.
Solution is sticky bit

• If a directory having rwx permissions to all has this bit set, no one
can delete each others file

• It is represented by an t in the execute portion of others
permissions, or a capital T in case if the others execute permission
is off

• The /tmp directory has its sticky bit set and that is how although
being shared among all users of the system, no one can delete each
others files

• To check the all the directories in our system having their sticky
bit set, run the following command

find / -perm /1000
• To set the SGID bit of a program

chmod o+t mydir

SPECIAL PERMISSIONS
Sticky bit: (On Files)
• On older UNIX implementations, sticky bit was provided as

a way of making commonly used programs run faster
• The underlying concept was “ Loading a program from disk

(where it may be fragmented) is slow as compared to
loading a program from swap space on disk (where it is not
fragmented)

• If the sticky bit of an executable is set then the first
time it is executed, a copy of the program text is saved inn
the swap area, thus it sticks on the swap space and loads
faster on subsequent execution

• But today, the current sophisticated memory management
schemes have rendered this use of stick bit obsolete

We’re done for now, but
Todo’s for you after this
lecture…

19

• Go through the related video lectures # 22 and 23.

• Practice, practice and practice…

